Download Free Luminescence Microscopy And Spectroscopy Book in PDF and EPUB Free Download. You can read online Luminescence Microscopy And Spectroscopy and write the review.

Reflecting the expanding field's need for reliable protocols, Fluorescence Spectroscopy and Microscopy: Methods and Protocols offers techniques from a worldwide team of experts on this versatile and vital subject. The topics covered fall into four broad categories: steady-state fluorescence spectroscopy, time-resolved fluorescence spectroscopy, fluorescent probe development, and the various sub-categories of fluorescence microscopy, such as fluorescence recovery after photobleaching (FRAP), live cell FRET imaging (FRETim), fluorescence lifetime imaging (FLIM), fluorescence fluctuation spectroscopy (FFS), and single-molecule fluorescence spectroscopy (smFS). Written as a part of the popular Methods in Molecular Biology series, chapters include the kind of unambiguous detail and key implementation advice that proves essential for successful results.
Providing much-needed information on fluorescence spectroscopy and microscopy, this ready reference covers detection techniques, data registration, and the use of spectroscopic tools, as well as new techniques for improving the resolution of optical microscopy below the resolution gap. Starting with the basic principles, the book goes on to treat fluorophores and labeling, single-molecule fluorescence spectroscopy and enzymatics, as well as excited state energy transfer, and super-resolution fluorescence imaging. Examples show how each technique can help in obtaining detailed and refined information from individual molecular systems.
The third edition of this established classic text reference builds upon the strengths of its very popular predecessors. Organized as a broadly useful textbook Principles of Fluorescence Spectroscopy, 3rd edition maintains its emphasis on basics, while updating the examples to include recent results from the scientific literature. The third edition includes new chapters on single molecule detection, fluorescence correlation spectroscopy, novel probes and radiative decay engineering. Includes a link to Springer Extras to download files reproducing all book artwork, for easy use in lecture slides. This is an essential volume for students, researchers, and industry professionals in biophysics, biochemistry, biotechnology, bioengineering, biology and medicine.
Fluorescence Microscopy of Living Cells in Culture, Part B
The development of mineralogy, the evolutionary changes in compre hending the mineral substance of the earth are closely associated with the progress of research methods. Over a space of more than two and half centuries, from the goniometry of the mineral crystals to microscopic petrography and optical mineralogy, to crystal structure determinations, electron micros copy and electron diffraction and finally investigations into their electri cal, magnetic and mechanical properties, all this has led to the formation of the existing system of mineralogy, its notions, theories and to a proper description of minerals. However, no matter how great the variety of methods employed in mineralogy, they all come to a few aspects of substance characteristics. These are methods of determining the composition, structure and proper ties of the minerals. Thus the X-ray micro analyzer, the atom-absorption, neutron-activation, chromatographic and other analyses open up new opportunities for determining nothing else but the elementary com position of minerals.
During the past two decades, there has been an increasing appreciation of the significant value that lifetime-based techniques can add to biomedical studies and applications of fluorescence. Bringing together perspectives of different research communities, Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Dia
This first volume in the new Springer Series on Fluorescence brings together fundamental and applied research from this highly interdisciplinary and field, ranging from chemistry and physics to biology and medicine. Special attention is given to supramolecular systems, sensor applications, confocal microscopy and protein-protein interactions. This carefully edited collection of articles is an invaluable tool for practitioners and novices.
This is the first book-length treatment of both the theoretical background to fluorescence correlation spectroscopy (FCS) and a variety of applications in various fields of science. The high spatial and temporal resolution of FCS has made it a powerful tool for the analysis of molecular interactions and kinetics, transport properties due to thermal motion, and flow. It contains an essential contribution from Nobel Prize winner M. Eigen, who is credited with inventing FCS.