Download Free Ludwig Faddeev Memorial Volume A Life In Mathematical Physics Book in PDF and EPUB Free Download. You can read online Ludwig Faddeev Memorial Volume A Life In Mathematical Physics and write the review.

Ludwig Faddeev is widely recognized as one of the titans of 20th century mathematical physics. His fundamental contributions to scattering theory, quantum gauge theories, and the theory of classical and quantum completely integrable systems played a key role in shaping modern mathematical physics.Ludwig Faddeev's major achievements include the solution of the three-body problem in quantum mechanics, the mathematical formulation of quantum gauge theories and corresponding Feynman rules, Hamiltonian and algebraic methods in mathematical physics, with applications to gauge theories with anomalies, quantum systems with constraints and solitons, the discovery of the algebraic structure of classical and quantum integrable systems and quantum groups, and solitons with the topology of knots.Faddeev's name is imprinted in many areas of mathematics and theoretical physics, including 'Faddeev's equations' and 'Faddeev's Green function' in scattering theory, 'Faddeev-Popov ghosts' and 'Faddeev-Popov determinant' in gauge theories, 'Gardner-Faddeev-Zakharov bracket' for the KdV equation, 'Faddeev-Zamolodchikov algebra' in quantum integrable systems, 'Faddeev-Reshetikhin-Takhtajan construction' in the theory of quantum groups, knotted solitons in the 'Skyrme-Faddeev model' and many others.Ludwig Faddeev founded the St. Petersburg school of modern mathematical physics and distinguished himself by serving the mathematics community for over three decades including his leadership of the International Mathematical Union in the period of 1986-1990. He was conferred numerous prizes and memberships of prestigious institutions in recognition of the importance of his work. These include the Dannie Heineman Prize for Mathematical Physics, the Dirac Medal, the Max Planck Medal, the Shaw Prize and the Lomonosov Gold Medal among others.A gathering of contributions from some of the biggest names in mathematics and physics, this volume serves as a tribute to this legendary figure. Volume contributors include: Fields medalist Sir Michael Atiyah, Jürg Fröhlich, Roman Jackiw, Vladimir Korepin, Nikita Nekrasov, André Neveu, Alexander M Polyakov, Samson Shatashvili, Fedor Smirnov as well as Nobel laureates Frank Wilczek and C N Yang.
Frank Wilczek is one of the foremost theoretical physicists of the past half-century. He has made several fundamental contributions that shape our understanding of high energy physics, cosmology, condensed matter physics, and statistical physics. In all these fields his many discoveries continue to play a key role in shaping the direction of modern theoretical physics.Among Wilczek's major achievements is the discovery of asymptotic freedom, which predicts and explains the ultraviolet behavior of non-abelian gauge theories. The axion, which he co-discovered and named, has emerged as the prevalent candidate for explaining the origin of dark matter in the Universe. His invention of color-flavor locking explains chiral symmetry breaking in high density quantum chromodynamics. His introduction of fractional statistics and anyons are pivotal to our understanding of the fractional quantum Hall effect and form the building blocks of topological quantum computing. His invention of the time crystal concept has catalyzed extensive investigations of dynamical phases of physical systems.Frank Wilczek received the 2004 Nobel Prize in Physics for the discovery of asymptotic freedom. He is also the recipient of several Prizes and honorary awards including the MacArthur Fellowship, the Lorentz Medal of the Royal Netherlands Academy of Arts and Sciences, the Lilienfeld Prize of the American Physical Society, the High Energy and Particle Physics Prize of the European Physical Society, and the King Faisal International Prize for Science of the King Faisal Foundation. He is a member of the National Academy of Sciences, American Academy of Arts and Sciences, and the American Philosophical Society. He is also a foreign member of the Royal Netherlands Academy of Arts and Sciences and of the Royal Academy of Sciences in Sweden.He is currently the Herman Feshbach Professor of Physics at MIT Center for Theoretical Physics. He also holds a professorship at Stockholm University, is a Distinguished Professor at Arizona State University, and is the founding director of the Tsung-Dao Lee Institute and Chief Scientist of the Wilczek Quantum Center at Shanghai Jiao Tong University.This volume serves as a tribute to Frank Wilczek's legendary scientific contributions, commemorating his 70th birthday and the first 50 years of his career as a theoretical physicist. The contributors include several of his PhD students, close collaborators, and both past and present colleagues.
The book presents the winners of the Abel Prize in mathematics for the period 2013–17: Pierre Deligne (2013); Yakov G. Sinai (2014); John Nash Jr. and Louis Nirenberg (2015); Sir Andrew Wiles (2016); and Yves Meyer (2017). The profiles feature autobiographical information as well as a scholarly description of each mathematician’s work. In addition, each profile contains a Curriculum Vitae, a complete bibliography, and the full citation from the prize committee. The book also includes photos for the period 2003–2017 showing many of the additional activities connected with the Abel Prize. As an added feature, video interviews with the Laureates as well as videos from the prize ceremony are provided at an accompanying website (http://extras.springer.com/). This book follows on The Abel Prize: 2003-2007. The First Five Years (Springer, 2010) and The Abel Prize 2008-2012 (Springer 2014), which profile the work of the previous Abel Prize winners.
The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.
Describes the relation between classical and quantum mechanics. This book contains a discussion of problems related to group representation theory and to scattering theory. It intends to give a mathematically oriented student the opportunity to grasp the main points of quantum theory in a mathematical framework.
This vividly illustrated history of the International Congress of Mathematicians- a meeting of mathematicians from around the world held roughly every four years- acts as a visual history of the 25 congresses held between 1897 and 2006, as well as a story of changes in the culture of mathematics over the past century. Because the congress is an int
The Conference on Quantum Mechanics, Elementary Particles, Quantum Cosmology and Complexity was held in honour of Professor Murray Gell-Mann's 80th birthday in Singapore on 24?26 February 2010. The conference paid tribute to Professor Gell-Mann's great achievements in the elementary particle physics. This notable birthday volume contains the presentations made at the conference by many eminent scientists, including Nobel laureates C N Yang, G 't Hooft and K Wilson. Other invited speakers include G Zweig, N Samios, M Karliner, G Karl, M Shifman, J Ellis, S Adler and A Zichichi. About Murray Gell-Mann Murray Gell-Mann, born September 15, 1929, won the 1969 Nobel Prize in physics for his work on the theory of elementary particles. His contributions span the entire history of particle physics, from the early days of the particle zoo to the modern day QCD. Along the way, even as he proposed new quantum numbers to bring order into the zoo, he had fun in naming them. And thus was born Strangeness, Flavor, Hadrons, Baryons, Leptons, the Eightfold Way, Color, Quarks, Gluons and, with Harald Fritzsch, the standard field theory of strong interactions, Quantum Chromodynamics (QCD). He also proposed with Richard Feynman the V-A theory of beta decay. Gell-Mann discovered the Current Algebra, proposed (with Levy) the sigma model of pions and the see-saw mechanism for the neutrino masses.
This invaluable collection of memoirs and reviews on scientific activities of the most prominent theoretical physicists belonging to the Landau School OCo Landau, Anselm, Gribov, Zeldovich, Kirzhnits, Migdal, Ter-Martirosyan and Larkin OCo are being published in English for the first time.The main goal is to acquaint readers with the life and work of outstanding Soviet physicists who, to a large extent, shaped theoretical physics in the 1950sOCo70s. Many intriguing details have remained unknown beyond the OC Iron CurtainOCO which was dismantled only with the fall of the USSR.
The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Go rdon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians.The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results.The book will be essential reading for all mathematical physicists working in field theory and statistical physics.