Download Free Low Temperature Silicon Sputter Epitaxy Book in PDF and EPUB Free Download. You can read online Low Temperature Silicon Sputter Epitaxy and write the review.

This subject is divided into two volumes. Volume I is on homoepitaxy with the necessary systems, techniques, and models for growth and dopant incorporation. Three chapters on homoepitaxy are followed by two chapters describing the different ways in which MBE may be applied to create insulator/Si stackings which may be used for three-dimensional circuits. The two remaining chapters in Volume I are devoted to device applications. The first three chapters of Volume II treat all aspects of heteroepitaxy with the exception of the epitaxial insulator/Si structures already treated in volume I.
Crystalline semiconductors in the form of thin films are crucial materials for many modern, advanced technologies in fields such as microelectronics, optoelectronics, display technology, and photovoltaic technology. Crystalline semiconductors can be produced at surprisingly low temperatures (as low as 120C) by crystallization of amorphous semicon
Low temperature processes for semiconductors have been recently under intensive development to fabricate controlled device structures with minute dimensions in order to achieve the highest device performance and new device functions as well as high integration density. Comprising reviews by experts long involved in the respective pioneering work, this volume makes a useful contribution toward maturing the process of low temperature epitaxy as a whole.
Epitaxial Silicon Technology is a single-volume, in-depth review of all the silicon epitaxial growth techniques. This technology is being extended to the growth of epitaxial layers on insulating substrates by means of a variety of lateral seeding approaches. This book is divided into five chapters, and the opening chapter describes the growth of silicon layers by vapor-phase epitaxy, considering both atmospheric and low-pressure growth. The second chapter discusses molecular-beam epitaxial growth of silicon, providing a unique ability to grow very thin layers with precisely controlled doping characteristics. The third chapter introduces the silicon liquid-phase epitaxy, in which the growth of silicon layers arose from a need to decrease the growth temperature and to suppress autodoping. The fourth chapter addresses the growth of silicon on sapphire for improving the radiation hardness of CMOS integrated circuits. The fifth chapter deals with the advances in the application of silicon epitaxial growth. This chapter also discusses the formation of epitaxial layers of silicon on insulators, such as silicon dioxide, which do not provide a natural single crystal surface for growth. Each chapter begins with a discussion on the fundamental transport mechanisms and the kinetics governing the growth rate, followed by a description of the electrical properties that can be achieved in the layers and the restrictions imposed by the growth technique upon the control over its electrical characteristics. Each chapter concludes with a discussion on the applications of the particular growth technique. This reference material will be useful for process technologists and engineers who may need to apply epitaxial growth for device fabrication.
This book comprehensively covers the areas of materials growth, characterisation and descriptions for the new devices in siliconheterostructure material systems. In recent years, the development of powerful epitaxial growth techniques such as molecular beam epitaxy (MBE), ultra-high vacuum chemical vapour deposition (UHVCVD) and other low temperature epitaxy techniques has given rise to a new area of research of bandgap engineering in silicon-based materials. This has paved the way not only for heterojunction bipolar and field effect transistors, but also for other fascinating novel quantum devices. This book provides an excellent introduction and valuable references for postgraduate students and research scientists.
This standard handbook for engineers covers the fundamentals, theory and applications of radio, electronics, computers, and communications equipment. It provides information on essential, need-to-know topics without heavy emphasis on complicated mathematics. It is a "must-have" for every engineer who requires electrical, electronics, and communications data. Featured in this updated version is coverage on intellectual property and patents, probability and design, antennas, power electronics, rectifiers, power supplies, and properties of materials. Useful information on units, constants and conversion factors, active filter design, antennas, integrated circuits, surface acoustic wave design, and digital signal processing is also included. This work also offers new knowledge in the fields of satellite technology, space communication, microwave science, telecommunication, global positioning systems, frequency data, and radar.
The edited volume "Epitaxy" is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of materials science. The book comprises single chapters authored by various researchers and edited by an expert active in this research area. All chapters are complete in themselves but are united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors in the field of materials science as well as opening new possible research paths for further developments.
This book is the second in a series of scientific textbooks designed to cover advances in selected research fields from a basic and general viewpoint, so that only limited knowledge is required to understand the significance of recent developments. Further assistance for the non-specialist is provided by the summary of abstracts in Part 2, which includes many of the major papers published in the research field. Crystal Growth of Semiconductor Materials has been the subject of numerous books and reviews and the fundamental principles are now well-established. We are concerned chiefly with the deposition of atoms onto a suitable surface - crystal growth - and the generation of faults in the atomic structure during growth and subsequent cooling to room temperature - crystal defect structure. In this book I have attempted to show that whilst the fundamentals of these processes are relatively simple, the complexities of the interactions involved and the individuality of different materials systems and growth processes have ensured that experimentally verifiable predictions from scientific principles have met with only limited success - good crystal growth remains an art. However, recent advances, which include the reduction of growth temperatures, the reduction or elimination of reactant transport variables and the use of better-controlled energy sources to promote specific reactions, are leading to simplified growth systems.