Download Free Low Power Portable Microfluidic Delivery System Book in PDF and EPUB Free Download. You can read online Low Power Portable Microfluidic Delivery System and write the review.

The first book offering a global overview of fundamental microfluidics and the wide range of possible applications, for example, in chemistry, biology, and biomedical science. As such, it summarizes recent progress in microfluidics, including its origin and development, the theoretical fundamentals, and fabrication techniques for microfluidic devices. The book also comprehensively covers the fluid mechanics, physics and chemistry as well as applications in such different fields as detection and synthesis of inorganic and organic materials. A useful reference for non-specialists and a basic guideline for research scientists and technicians already active in this field or intending to work in microfluidics.
"Energy Technology, Physical Electrochemistry and Battery Divisions."
Biomedical Applications of Microfluidic Devices introduces the subject of microfluidics and covers the basic principles of design and synthesis of actual microchannels. The book then explores how the devices are coupled to signal read-outs and calibrated, including applications of microfluidics in areas such as tissue engineering, organ-on-a-chip devices, pathogen identification, and drug/gene delivery. This book covers high-impact fields (microarrays, organ-on-a-chip, pathogen detection, cancer research, drug delivery systems, gene delivery, and tissue engineering) and shows how microfluidics is playing a key role in these areas, which are big drivers in biomedical engineering research. This book addresses the fundamental concepts and fabrication methods of microfluidic systems for those who want to start working in the area or who want to learn about the latest advances being made. The subjects covered are also an asset to companies working in this field that need to understand the current state-of-the-art. The book is ideal for courses on microfluidics, biosensors, drug targeting, and BioMEMs, and as a reference for PhD students. The book covers the emerging and most promising areas of biomedical applications of microfluidic devices in a single place and offers a vision of the future. - Covers basic principles and design of microfluidics devices - Explores biomedical applications to areas such as tissue engineering, organ-on-a-chip, pathogen identification, and drug and gene delivery - Includes chemical applications in organic and inorganic chemistry - Serves as an ideal text for courses on microfluidics, biosensors, drug targeting, and BioMEMs, as well as a reference for PhD students
Advances in Microfluidics provides a current snapshot of the field of microfluidics as it relates to a variety of sub-disciplines. The chapters have been divided into three sections: Fluid Dynamics, Technology, and Applications, although a number of the chapters contain aspects that make them applicable to more than one section. It is hoped that this book will serve as a useful resource for recent entrants to the field as well as for established practitioners.
The first book offering a global overview of fundamental microfluidics and the wide range of possible applications, for example, in chemistry, biology, and biomedical science. As such, it summarizes recent progress in microfluidics, including its origin and development, the theoretical fundamentals, and fabrication techniques for microfluidic devices. The book also comprehensively covers the fluid mechanics, physics and chemistry as well as applications in such different fields as detection and synthesis of inorganic and organic materials. A useful reference for non-specialists and a basic guideline for research scientists and technicians already active in this field or intending to work in microfluidics.
This significant and uniquely comprehensive five-volume reference is a valuable source for research workers, practitioners, computer scientists, students, and technologists. It covers all of the major topics within the subject and offers a comprehensive treatment of MEMS design, fabrication techniques, and manufacturing methods. It also includes current medical applications of MEMS technology and provides applications of MEMS to opto-electronic devices. It is clearly written, self-contained, and accessible, with helpful standard features including an introduction, summary, extensive figures and design examples with comprehensive reference lists.
This book provides a current view of the research and commercial landscape of diagnostics devices, particularly those that utilize microscale technologies, intended for both patient and laboratory use. Common diagnostic devices that are based on microfluidic principles include glucose sensors for diabetic patients and over-the-counter pregnancy tests. Other diagnostic devices are being developed to quickly test a patient for bacterial and viral infections, and other diseases. The chapters, written by experts from around the world, discuss how to fabricate, apply, and market microfluidic diagnostic chips – for lab and at-home use. Most importantly, the book also contains a discussion of topics relevant to the private sector, including patient-focused, market-oriented development of diagnostics devices. Chapter 9 of this book is freely available as a downloadable Open Access PDF under a CC-BY 3.0 license. https://s3-us-west-2.amazonaws.com/tandfbis/rt-files/docs/Open+Access+Chapters/9781498772938_oachapter9.pdf