Download Free Low Power Computer Vision Book in PDF and EPUB Free Download. You can read online Low Power Computer Vision and write the review.

Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.
Energy efficiency is critical for running computer vision on battery-powered systems, such as mobile phones or UAVs (unmanned aerial vehicles, or drones). This book collects the methods that have won the annual IEEE Low-Power Computer Vision Challenges since 2015. The winners share their solutions and provide insight on how to improve the efficiency of machine learning systems.
This book summarizes the key scientific outcomes of the Horizon 2020 research project TULIPP: Towards Ubiquitous Low-power Image Processing Platforms. The main focus lies on the development of high-performance, energy-efficient embedded systems for the growing range of increasingly complex image processing applications. The holistic TULIPP approach is described in the book, which addresses hardware platforms, programming tools and embedded operating systems. Several of the results are available as open-source hardware/software for the community. The results are evaluated with several use cases taken from real-world applications in key domains such as Unmanned Aerial Vehicles (UAVs), robotics, space and medicine. Discusses the development of high-performance, energy-efficient embedded systems for the growing range of increasingly complex image processing applications; Covers the hardware architecture of embedded image processing systems, novel methods, tools and libraries for programming those systems as well as embedded operating systems to manage those systems; Demonstrates results with several challenging applications, such as medical systems, robotics, drones and automotive.
This book constitutes the refereed proceedings of the 7th International Conference on Computer Vision Systems, ICVS 2009, held in Liege, Belgium, October 13-15, 2009. The 21 papers for oral presentation presented together with 24 poster presentations and 2 invited papers were carefully reviewed and selected from 96 submissions. The papers are organized in topical sections on human-machine-interaction, sensors, features and representations, stereo, 3D and optical flow, calibration and registration, mobile and autonomous systems, evaluation, studies and applications, learning, recognition and adaption.
This book comprises the proceedings of the International Conference on Machine Vision and Augmented Intelligence (MAI 2022). The conference proceedings encapsulate the best deliberations held during the conference. The diversity of participants in the event from academia, industry, and research reflects in the articles appearing in the book. The book encompasses all industrial and non-industrial applications. This book covers a wide range of topics such as modeling of disease transformation, epidemic forecast, image processing, and computer vision, augmented intelligence, soft computing, deep learning, image reconstruction, artificial intelligence in health care, brain-computer interface, cybersecurity, social network analysis, and natural language processing.​
This illuminating collection offers a fresh look at the very latest advances in the field of embedded computer vision. Emerging areas covered by this comprehensive text/reference include the embedded realization of 3D vision technologies for a variety of applications, such as stereo cameras on mobile devices. Recent trends towards the development of small unmanned aerial vehicles (UAVs) with embedded image and video processing algorithms are also examined. Topics and features: discusses in detail three major success stories – the development of the optical mouse, vision for consumer robotics, and vision for automotive safety; reviews state-of-the-art research on embedded 3D vision, UAVs, automotive vision, mobile vision apps, and augmented reality; examines the potential of embedded computer vision in such cutting-edge areas as the Internet of Things, the mining of large data streams, and in computational sensing; describes historical successes, current implementations, and future challenges.
Computer vision has made enormous progress in recent years, and its applications are multifaceted and growing quickly, while many challenges still remain. This book brings together a range of leading researchers to examine a wide variety of research directions, challenges, and prospects for computer vision and its applications. This book highlights various core challenges as well as solutions by leading researchers in the field. It covers such important topics as data-driven AI, biometrics, digital forensics, healthcare, robotics, entertainment and XR, autonomous driving, sports analytics, and neuromorphic computing, covering both academic and industry R&D perspectives. Providing a mix of breadth and depth, this book will have an impact across the fields of computer vision, imaging, and AI. Computer Vision: Challenges, Trends, and Opportunities covers timely and important aspects of computer vision and its applications, highlighting the challenges ahead and providing a range of perspectives from top researchers around the world. A substantial compilation of ideas and state-of-the-art solutions, it will be of great benefit to students, researchers, and industry practitioners.
As the state-of-the-art imaging technologies became more and more advanced, yielding scientific data at unprecedented detail and volume, the need to process and interpret all the data has made image processing and computer vision increasingly important. Sources of data that have to be routinely dealt with today's applications include video transmission, wireless communication, automatic fingerprint processing, massive databanks, non-weary and accurate automatic airport screening, robust night vision, just to name a few. Multidisciplinary inputs from other disciplines such as physics, computational neuroscience, cognitive science, mathematics, and biology will have a fundamental impact in the progress of imaging and vision sciences. One of the advantages of the study of biological organisms is to devise very different type of computational paradigms by implementing a neural network with a high degree of local connectivity. This is a comprehensive and rigorous reference in the area of biologically motivated vision sensors. The study of biologically visual systems can be considered as a two way avenue. On the one hand, biological organisms can provide a source of inspiration for new computational efficient and robust vision models and on the other hand machine vision approaches can provide new insights for understanding biological visual systems. Along the different chapters, this book covers a wide range of topics from fundamental to more specialized topics, including visual analysis based on a computational level, hardware implementation, and the design of new more advanced vision sensors. The last two sections of the book provide an overview of a few representative applications and current state of the art of the research in this area. This makes it a valuable book for graduate, Master, PhD students and also researchers in the field.
This book contains the proceedings of the 11th FSR (Field and Service Robotics), which is the leading single-track conference on applications of robotics in challenging environments. This conference was held in Zurich, Switzerland from 12-15 September 2017. The book contains 45 full-length, peer-reviewed papers organized into a variety of topics: Control, Computer Vision, Inspection, Machine Learning, Mapping, Navigation and Planning, and Systems and Tools. The goal of the book and the conference is to report and encourage the development and experimental evaluation of field and service robots, and to generate a vibrant exchange and discussion in the community. Field robots are non-factory robots, typically mobile, that operate in complex and dynamic environments: on the ground (Earth or other planets), under the ground, underwater, in the air or in space. Service robots are those that work closely with humans to help them with their lives. The first FSR was held in Canberra, Australia, in 1997. Since that first meeting, FSR has been held roughly every two years, cycling through Asia, Americas, and Europe.
This 4-volumes set constitutes the proceedings of the ICPR 2022 Workshops of the 26th International Conference on Pattern Recognition Workshops, ICPR 2022, Montreal, QC, Canada, August 2023. The 167 full papers presented in these 4 volumes were carefully reviewed and selected from numerous submissions. ICPR workshops covered domains related to pattern recognition, artificial intelligence, computer vision, image and sound analysis. Workshops’ contributions reflected the most recent applications related to healthcare, biometrics, ethics, multimodality, cultural heritage, imagery, affective computing, etc.