Download Free Long Range Electron Transfer In Biology Book in PDF and EPUB Free Download. You can read online Long Range Electron Transfer In Biology and write the review.

Electron Transfer in Chemistry and Biology An Introduction to the Theory Alexander M. Kuznetsov Russian Academy of Sciences, Moscow, Russia Jens Ulstrup Technical University of Denmark, Lyngby, Denmark Electron transfer is perhaps the single most important physical event in chemical, electrochemical, photochemical, biochemical, and biophysical processes. The focus and ubiquity of electron transfer is intriguing and exciting but a coherent and comprehensive approach to this topic is at the same time a challenge. Electron Transfer in Chemistry and Biology provides a thorough and didactic approach to the theoretical basis of electron transfer phenomena. Not only does it offer a full introduction to this area and a discussion of its historical development, it also gives detailed explanations of difficult issues, for example, long-range electron transfers, stochastic and dynamic processes, and biological features. A wide variety of readers will find this volume of great interest, ranging from final year undergraduate students, postgraduate students and university lecturers, to research staff in numerous fields including medical companies, electronics industry, catalysis research and development, chemical industry and some hospitals.
From May 3-7,1997, the NATO Advanced Research Workshop on 'Biological Electron Transfer Chains' was organized in Tomar, Portugal. In the application for support the choice of the topic was justified as follows: "[Until recently efforts] have concentrated on the study of the structure and function of individual redox enzymes and proteins. Enough information is now available to make a start with the study of biological electron transfer (E1) at the next higher level of organization, that of the complete ET chain." The interest in the workshop was high: the majority of participants had registered before the workshop was formally announced, which illustrates the popularity of the topic within the biochemical and biophysical communities. The present volume contains a number of reports based on the lectures presented by the key speakers during the meeting. The workshop dealt with the following three themes: a) Electron transfer, which is the subject of Chapter 1. The analysis of ET at the molecular level is still fundamental for an understanding of how ET chains operate in vivo. After 40 years of research the contours of the subject are becoming clear now. b) Bacterial redox chains. This is the subject of Chapter 2. Its contents show how complicated these chains can be, often involving a number of gene clusters. Our understanding of the regulatory aspects and control mechanisms of these chains is only in its beginning.
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid
This novel, interdisciplinary text presents biological understanding in terms of general underlying principles, treating energy as the overarching theme and emphasizing the all-pervading influence of energy transformation in every process, both living and non-living. Key processes and concepts are explained in turn, culminating in a description of the overall functioning and regulation of a living cell. The book rounds off the story of life with a brief account of the endosymbiotic origins of eukaryotic cells, the development of multicellularity, and the emergence of modern plants and animals. Multidisciplinary research in science is becoming commonplace. However, as traditional boundaries start to break down, researchers are increasingly aware of the deficiencies in their knowledge of related disciplines. Introducing Biological Energetics redresses the reciprocal imbalance in the knowledge levels of physical and biological scientists in particular. Its style of presentation and depth of treatment has been carefully designed to unite these two readerships.
Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.