Download Free Liquid Phase Oxidation Book in PDF and EPUB Free Download. You can read online Liquid Phase Oxidation and write the review.

The first book to place recent academic developments within the context of real life industrial applications, this is a timely overview of the field of aerobic oxidation reactions in the liquid phase that also illuminates the key challenges that lie ahead. As such, it covers both homogeneous as well as heterogeneous chemocatalysis and biocatalysis, along with examples taken from various industries: bulk chemicals and monomers, specialty chemicals, flavors and fragrances, vitamins, and pharmaceuticals. One chapter is devoted to reactor concepts and engineering aspects of these methods, while another deals with the relevance of aerobic oxidation catalysis for the conversion of renewable feedstock. With chapters written by a team of academic and industrial researchers, this is a valuable reference for synthetic and catalytic chemists at universities as well as those working in the pharmaceutical and fine chemical industries seeking a better understanding of these reactions and how to design large scale processes based on this technology.
Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an international team of leading chemists representing both industry and academia. The book begins with a chapter on environmentally benign oxidants and then covers: Selective oxidations catalyzed by TS-1 and other metal-substituted zeolites Selective catalytic oxidation over ordered nanoporous metallo-aluminophosphates Selective oxidations catalyzed by mesoporous metal-silicates Liquid phase oxidation of organic compounds by supported metal-based catalysts Selective liquid phase oxidations in the presence of supported polyoxometalates Selective oxidations catalyzed by supported metal complexes Liquid phase oxidation of organic compounds by metal-organic frameworks Heterogeneous photocatalysis for selective oxidations with molecular oxygen All the chapters dedicated to specific types of catalysts follow a similar organization and structure, making it easy to compare the advantages and disadvantages of different catalysts. The final chapter examines the latest industrial applications, such as the production of catechol and hydroquinone, cyclohexanone oxime, and propylene oxide. With its unique focus on liquid phase heterogeneous oxidation catalysis, this book enables researchers in organic synthesis and oxidation catalysis to explore and develop promising new catalytic materials and synthetic routes for a broad range of industrial applications.
Liquid Phase Oxidation
The Oxidation of Cyclohexane focuses on the processes, methodologies, reactions, and approaches involved in the oxidation of cyclohexane. The publication first offers information on the theory of slow chain oxidations and the products of liquid-phase cyclohexane oxidation. Discussions focus on the applicability of the stationary state method to liquid-phase oxidation reactions; mechanism of liquid hydrocarbon chain oxidation; kinetic equations for product accumulation in degenerate branching chain reactions; and changes of the volume of the liquid phase due to oxidation product formation. The text then ponders on experimental apparatus for the study of the liquid-phase oxidation of cyclohexane, including prevention of cyclohexane losses in the waste gases, explosion danger and problems of safety, and characteristics of gas sampling in cyclohexane oxidation apparatus. The manuscript takes a look at the kinetics of uncatalyzed cyclohexane oxidation and kinetics of cyclohexane oxidation in continuous flow systems. Topics include effect of temperature on the relative yield of cyclohexane oxidation products; kinetics of cyclohexane oxidation in a glass reactor; rate of oxygen absorption and accumulation of reaction products; ideal displacement reactor; and determination of diffusion factor. The publication is a dependable reference for readers interested in the oxidation of cyclohexane.
This book introduces the concept of novel process windows, focusing on cost improvements, safety, energy and eco-efficiency throughout each step of the process. The first part presents the new reactor and process-related technologies, introducing the potential and benefit analysis. The core of the book details scenarios for unusual parameter sets and the new holistic and systemic approach to processing, while the final part analyses the implications for green and cost-efficient processing. With its practical approach, this is invaluable reading for those working in the pharmaceutical, fine chemicals, fuels and oils industries.
IMRET 5 featured more than 80 oral and poster communications, covering the entire interdisciplinary field from design, production, modeling and characterization of microreactor devices to application of microstructured systems for production, energy and transportation, including many analytical and biological applications. A particularly strong topic was the investigation of the potential of microstructuring of reactors and systems components for process intensification. Perspectives of combining local, in situ, data acquisition with appropriate microstructuring of actuators and components within chemical and biological devices were explored in order to enhance process performance and facilitate process control.
Hydrogen peroxide is a chemical that is becoming increasingly fashionable as an oxidant, both in industry and in academia and whose production is expected to increase significantly in the next few years. This growth in interest is largely due to environmental considerations related to the clean nature of hydrogen peroxide as an oxidant, its by-product being only water. To date this chemical has largely been employed as a non-selective oxidant in operations like the bleaching of paper, cellulose and textiles, or in the formulation of detergents, and only to a minimal extent in the manufacture of organic chemicals. This book has been organized to cover the different aspects of the chemistry of hydrogen peroxide. The various chapters into which the book is divided have been written critically by the authors with the general aim of stimulating new ideas and emphasizing those aspects that are likely to lead to new developments in organic synthesis in the coming future.
The past 25 years in chemical kinetics have seen major advances in studyiqg the mechanisms of complex chemical re actions, in particular free radical reactions. Many differ ent methods have been developed for quantitative studies of elementary chemical reactions. Thousands of rate constants have been measured, for hundreds of diverse chemical reac tions. It is becoming more and more difficult for the chemist to orient himself in the voluminous and rapidly growing liter ature of chemical reaction kinetics. This leads to major expenditures of time in searching out, collecting. and eval uating quantitative kinetic data; to unnecessary repetition (duplication) of research; and to a situation in which the rich material already accumulated in the field of chemical kinetics is very often not fully utilized in comparing, interpreting, and analyzing new experimental data. There is a pressing need for the creation of a series of handbooks on reaction rate constants. Such work was begun several years ago at the initiative of V. N. Kondrat'ev, and is now going forward under his direction at the Institute of Chemical Physics of the USSR Academy of Sciences. This book is devoted to liquid-phase, homolytic reactions. Part One contains data on monomolecular reactions in which molecules decompose to form radicals, as well as data on bi molecular and trimolecular reactions that form free radicals.
Providing a comprehensive review of reactions of oxidation for different classes of organic compounds and polymers, and biological processes mediated by free radicals, Oxidation and Antioxidants in Organic Chemistry and Biology puts the data and bibliographical information you need into one easy-to-use resource. You will find up-to-date information