Download Free Liquid Metal Engineering And Technology Book in PDF and EPUB Free Download. You can read online Liquid Metal Engineering And Technology and write the review.

Liquid Metal Corrosion: Fundamental Theory and Applications is designed to help scientists, engineers and students working on liquid metal (sodium, lead, lead-bismuth) to fundamentally understand liquid metal corrosion. Coverage includes a discussion of corrosion mechanisms, fundamental corrosion processes, and corrosion products' behaviors as well as methods on how to calculate corrosion rates. The book concludes with models designed to predict the corrosion/precipitation distribution in a primary corrosion loop. This book will be a useful resource for researchers in their efforts to determine appropriate materials selection and reactor design. Discusses liquid metal corrosion mechanisms Includes models to estimate/calculate corrosion rates Presents liquid metal corrosion controls and mitigation methods
Liquid metal technology has been the subject of an impetuous development in the recent decades, mainly due to the application of liquid met als in nuclear techniques. The technological development has been supported by studies of the basic physical-chemical properties of liquid metals: One major concern is the material behaviour in contact with the liquid metals, corrosion and the possible deterioration of metallic and ceramic materials which are in use as constructional or functional materials in such systems. Since the corrosion is in many cases not only a simple dissolution process, the chemical background of such processes had to be studied. Such studies included the determination of solubilities of metals and non-metals in liquid metals, the measurement of thermodynamic data of dissolved materials and of chemical equilibria. Several formerly unknown chemical compounds are formed in liquid metal~ lnd are only stable in this environment. The research and deve\opment devoted to the fission reactor techniques were more or less completed in several countries, further work is in progress in some countries in which the interest in fast breeder reactors arose recently. Even the worldwide program on fusion reactor technology is related to liquid metals, and severallaboratories are now contributing to this new technology.
This book discusses liquid metals used in various manufacturing processes in the aerospace and automobile industries. It provides important original and theoretical experimental results on the use of non-routine technologies. It also presents novel applications of more familiar experimental techniques and analyses of composites. Topics covered include the importance of liquid metals, friction stir welding to improve aluminium alloys, adhesion phenomenon of liquid metals, secondary aluminium used for producing products, and more.
The title presents an up-to-date account of the research, development, and applications of metallic alloys, recent research into the structure of charge materials, melt treatment, and casting technologies, and their influence on the properties of melts and ingots. This research has confirmed theoretical concepts about the microheterogenous constitution of metallic melts and has made it possible to manage the quality of castings and ingots of various alloys by their special treatment in the liquid state. The four chapters of the book give theoretical and experimental evidence of the effect of the melt constitution on the structure and properties of the solid metal. Liquid Metal Processing: Applications to Aluminium Alloy Production considers common features of structure formation in aluminium alloys for a wide range of solidification conditions, including ultrasonic and thermal melt treatments and discusses the technological problems of these treatments.
Materials covered include carbon, alloy and stainless steels; alloy cast irons; high-alloy cast steels; superalloys; titanium and titanium alloys; refractory metals and alloys; nickel-chromium and nickel-thoria alloys; structural intermetallics; structural ceramics, cermets, and cemented carbides; and carbon-composites.
Science and Technology of Liquid Metal Coolants in Nuclear Engineering is a comprehensive consolidation of the latest research and knowledge on liquid metal coolants. Over the last decades, various new technologies have been developed for the liquid metal coolants of fast breeder and fusion reactors and accelerator driven systems. Details of pumps and instrumentation used in these coolants and their operating principles are included to provide the reader with a well-rounded understanding of the topic and to guide on the operation of different liquid metal coolant systems. Methods for the safe handling and control of impurity levels in these coolants are clearly discussed, along with alkali metal fires and their management, including methods for safe disposal of sodium waste. - Discusses the thermophysical and chemical properties of liquid metals described with their microscopic origin - Includes methods for the safe handling of liquid metal coolants and their purification and management - Discusses pumps and instrumentation principles and design
Liquid metal MHO is within the scope of two series of international conferences. One is the International Congress on "MHD Power Generation", held every four years, which includes technical and economical aspects as well as scientific questions. The other if the Beer-Sheva Seminar on "MHO Flows and Turbulence", held every three years in Israel. In addition to these well established meetings, an IUTAM Symposium was previously organized in Cambridge (UK) in 1982 on "Metallurgical Applications of MHD" by the late Arthur Shercliff. It was focussed on a very specific subject developing radiply from the middle of the 1970's. The magnetic field was generally AC, including frequencies high enough for the skin-depth to be much smaller than the typical length scale of the liquide pool. And the development of new technologies, or the improvement of existing ones, was the main justification of most of the researches presented and discussed. Only two participants from Eastern countries attended this Symposium. By the middle of the 1980's we felt that on this very same topic ideas had reached much more maturity than in 1982. We also realized that a line of research on MHD flows related to fusion reactors (tokamaks) was developing significantly, with particular emphasis on flows at large interaction parameter.
Selected, peer reviewed papers from 2008 EMRS Symposium F: Nanocomposite materials in Warsaw in September 2008