Download Free Liquid Crystals From Modified Phases To Applications 2014 Book in PDF and EPUB Free Download. You can read online Liquid Crystals From Modified Phases To Applications 2014 and write the review.

This book is a printed edition of the Special Issue "Liquid Crystals" that was published in Materials
Bridging soft matter physics, materials science and engineering, polymer-modified liquid crystals are an exciting class of materials. They represent a vibrant field of research, promising advances in display technologies, as well as non-display uses. Describing all aspects of polymer-dispersed and polymer-stabilized liquid crystals, the broad coverage of this book makes it a must-have resource for anyone working in the area. The reader will find expert accounts covering basic concepts, materials synthesis and polymerization techniques, properties of various dispersed and stabilized phases, and critical overviews of their applications. Written by leaders in the field, this book provides a state-of-the-art treatment of the topic. It will be essential reading for graduate students, as well as academic and industrial researchers needing an up-to-date guide to the field.
Much more than a slight revision, this second edition of the successful "Handbook of Liquid Crystals" is completely restructured and streamlined, with updated as well as completely new topics, 100% more content and a new team of editors and authors. As such, it fills the gap for a definitive, single source reference for all those working in the field of organized fluids and will set the standard for the next decade. The Handbook's new structure facilitates navigation and combines the presentation of the content by topic and by liquid-crystal type: A fundamentals volume sets the stage for an understanding of the liquid crystal state of matter, while individual volumes cover the main types and forms, with a final volume bringing together the diverse liquid crystal phases through their applications. This unrivaled, all-embracing coverage represents the undiluted knowledge on liquid crystals, making the Handbook a must-have wherever liquid crystals are investigated, produced or used, and in institutions where their science and technology is taught. Also available electronically on Wiley Online Library, www.wileyonlinelibrary.com/ref/holc Volume 1: Fundamentals of Liquid Crystals Volume 2: Physical Properties and Phase Behavior of Liquid Crystals Volume 3: Nematic and Chiral Nematic Liquid Crystals Volume 4: Smectic and Columnar Liquid Crystals Volume 5: Non-Conventional Liquid Crystals Volume 6: Nanostructured and Amphiphilic Liquid Crystals Volume 7: Supermolecular and Polymeric Liquid Crystals Volume 8: Applications of Liquid Crystals
Bent-Shaped Liquid Crystals: Structures and Physical Properties provides insight into the latest developments in the research on liquid crystals formed by bent-shaped mesogens. After a historical introduction, the expert authors discuss different kinds of mesophase structures formed by bent-shaped molecules. This book devotes the majority of its pages to physical properties such as polar switching, optics and non-linear optics, and behavior in restricted geometries. However, as chemistry is often highly relevant to the emergence of new phases, particularly with reflection symmetry breaking, it also involves a broad spectrum of interesting chemistry viewpoints.
Cosmetic Science and Technology: Theoretical Principles and Applications covers the fundamental aspects of cosmetic science that are necessary to understand material development, formulation, and the dermatological effects that result from the use of these products. The book fulfills this role by offering a comprehensive view of cosmetic science and technology, including environmental and dermatological concerns. As the cosmetics field quickly applies cutting-edge research to high value commercial products that have a large impact in our lives and on the world's economy, this book is an indispensable source of information that is ideal for experienced researchers and scientists, as well as non-scientists who want to learn more about this topic on an introductory level. - Covers the science, preparation, function, and interaction of cosmetic products with skin - Addresses safety and environmental concerns related to cosmetics and their use - Provides a graphical summary with short introductory explanation for each topic - Relates product type performance to its main components - Describes manufacturing methods of oral care cosmetics and body cosmetics in a systematic manner
Surface Modifications of Nanocellulose: Strategies, Methods, and Applications establishes the basic framework of nanocellulose. This book systemically summarizes the strategy and protocols of surface modifications on nanocellulose and comprehensively analyzes the relationship between surface modifications and their functional applications. It provides a one-stop reference for researchers engaged in biopolymer research with a commitment to the development of highly-valued functional polymers, nanomaterials, and green chemistry. - Systemically summarizes the strategy and protocols of surface modifications on nanocellulose - Includes a database for the modified species as a reference book for surface modification on nanocellulose - Illustrates the relationship between modification and applications of nanocellulose - Provides inspiration for the development of potential functional modification in this field
Liquid crystals (LCs) were discovered more than a century ago, and were, for a long time, treated as a physical curiosity, until the development of flat panel screens and display devices caused a revolution in the information display industry, and in fact in society. There would be no mobile phones without liquid crystals, no flat screen TVs or computer monitors, no virtual reality, just to name a few of the applications that have changed our whole world of vision and perception. All of these inventions are based on liquid crystals that are formed through a change in temperature, thermotropic LCs. However, there is another form of liquid crystals, described even earlier, yet much less talked about; the lyotropic liquid crystals that occur through the change of concentration of some molecules in a solvent. These are found in abundance in nature, making up the cell membranes, and are used extensively in the food, detergents and cosmetics industries. In this collection of articles by experts in their respective research areas, we bring together some of the most recent and innovative aspects of lyotropic liquid crystals, which we believe will drive future research and set novel trends in this field.
This text is a primer for liquid crystals, polymers, rubber and elasticity. It is directed at physicists, chemists, material scientists, engineers and applied mathematicians at the graduate student level and beyond.
The Phase Field Crystal (PFC) model incorporates microscopic structural details into a mesoscopic continuum theory. Methods for fast propagation of PFC interfaces are discussed in this book. They can handle a wide range of thermal gradients, supersaturations and supercoolings, including applications such as selective laser melting. The reader will find theoretical treatment in the first half, while the latter half discusses numerical models.
Volume 40 of Carbohydrate Chemistry: Chemical and Biological Approaches demonstrates the importance of the glycosciences for innovation and societal progress. Carbohydrates are molecules with essential roles in biology and also serve as renewable resources for the generation of new chemicals and materials. Honouring Professor André Lubineau's memory, this volume resembles a special collection of contributions in the fields of green and low-carbon chemistry, innovative synthetic methodology and design of carbohydrate architectures for medicinal and biological chemistry. Green methodology is illustrated by accounts on the industrial development of water-promoted reactions (C-glycosylation, cycloadditions) and the design of green processes and synthons towards sugar-based surfactants and materials. The especially challenging transformations at the anomeric center are presented in several contributions on glycosylation methodologies using iron or gold catalysis, electrochemical or enzymatic (thio)glycosylation, exo-glycal chemistry and bioengineering of carbohydrate synthases. Then, synthesis and structure of multivalent and supramolecular oligosaccharide architectures are discussed and related to their physical properties and application potential, e.g. for deepening our understanding of biological processes, such as enzymatic pathways or bacterial adhesion, and design of antibacterial, antifungal and innovative anticancer vaccines or drugs.