Download Free Line Graphs And Line Digraphs Book in PDF and EPUB Free Download. You can read online Line Graphs And Line Digraphs and write the review.

In the present era dominated by computers, graph theory has come into its own as an area of mathematics, prominent for both its theory and its applications. One of the richest and most studied types of graph structures is that of the line graph, where the focus is more on the edges of a graph than on the vertices. A subject worthy of exploration in itself, line graphs are closely connected to other areas of mathematics and computer science. This book is unique in its extensive coverage of many areas of graph theory applicable to line graphs. The book has three parts. Part I covers line graphs and their properties, while Part II looks at features that apply specifically to directed graphs, and Part III presents generalizations and variations of both line graphs and line digraphs. Line Graphs and Line Digraphs is the first comprehensive monograph on the topic. With minimal prerequisites, the book is accessible to most mathematicians and computer scientists who have had an introduction graph theory, and will be a valuable reference for researchers working in graph theory and related fields.
The study of directed graphs (digraphs) has developed enormously over recent decades, yet the results are rather scattered across the journal literature. This is the first book to present a unified and comprehensive survey of the subject. In addition to covering the theoretical aspects, the authors discuss a large number of applications and their generalizations to topics such as the traveling salesman problem, project scheduling, genetics, network connectivity, and sparse matrices. Numerous exercises are included. For all graduate students, researchers and professionals interested in graph theory and its applications, this book will be essential reading.
Introduction -- Forbidden subgraphs -- Root systems -- Regular graphs -- Star complements -- The Maximal exceptional graphs -- Miscellaneous results.
The book reviews inequalities for weighted entry sums of matrix powers. Applications range from mathematics and CS to pure sciences. It unifies and generalizes several results for products and powers of sesquilinear forms derived from powers of Hermitian, positive-semidefinite, as well as nonnegative matrices. It shows that some inequalities are valid only in specific cases. How to translate the Hermitian matrix results into results for alternating powers of general rectangular matrices? Inequalities that compare the powers of the row and column sums to the row and column sums of the matrix powers are refined for nonnegative matrices. Lastly, eigenvalue bounds and derive results for iterated kernels are improved.
This book constitutes the refereed proceedings of the 10th International Conference on Algorithms and Discrete Applied Mathematics, CALDAM 2024, held in Bhilai, India during February 15–17, 2024. The 22 full papers included in this book were carefully reviewed and selected from 57 submissions. They were organized in topical sections as follows: Algorithms and Complexity; Computational Geometry; Discrete Applied Mathematics; Graph Algorithms; Graph Theory.
This edited volume offers a detailed account of the theory of directed graphs from the perspective of important classes of digraphs, with each chapter written by experts on the topic. Outlining fundamental discoveries and new results obtained over recent years, this book provides a comprehensive overview of the latest research in the field. It covers core new results on each of the classes discussed, including chapters on tournaments, planar digraphs, acyclic digraphs, Euler digraphs, graph products, directed width parameters, and algorithms. Detailed indices ease navigation while more than 120 open problems and conjectures ensure that readers are immersed in all aspects of the field. Classes of Directed Graphs provides a valuable reference for graduate students and researchers in computer science, mathematics and operations research. As digraphs are an important modelling tool in other areas of research, this book will also be a useful resource to researchers working in bioinformatics, chemoinformatics, sociology, physics, medicine, etc.
Continuing to provide a carefully written, thorough introduction, Graphs & Digraphs, Fifth Edition expertly describes the concepts, theorems, history, and applications of graph theory. Nearly 50 percent longer than its bestselling predecessor, this edition reorganizes the material and presents many new topics. New to the Fifth Edition New or expanded coverage of graph minors, perfect graphs, chromatic polynomials, nowhere-zero flows, flows in networks, degree sequences, toughness, list colorings, and list edge colorings New examples, figures, and applications to illustrate concepts and theorems Expanded historical discussions of well-known mathematicians and problems More than 300 new exercises, along with hints and solutions to odd-numbered exercises at the back of the book Reorganization of sections into subsections to make the material easier to read Bolded definitions of terms, making them easier to locate Despite a field that has evolved over the years, this student-friendly, classroom-tested text remains the consummate introduction to graph theory. It explores the subject’s fascinating history and presents a host of interesting problems and diverse applications.
Chartrand and Zhangs Discrete Mathematics presents a clearly written, student-friendly introduction to discrete mathematics. The authors draw from their background as researchers and educators to offer lucid discussions and descriptions fundamental to the subject of discrete mathematics. Unique among discrete mathematics textbooks for its treatment of proof techniques and graph theory, topics discussed also include logic, relations and functions (especially equivalence relations and bijective functions), algorithms and analysis of algorithms, introduction to number theory, combinatorics (counting, the Pascal triangle, and the binomial theorem), discrete probability, partially ordered sets, lattices and Boolean algebras, cryptography, and finite-state machines. This highly versatile text provides mathematical background used in a wide variety of disciplines, including mathematics and mathematics education, computer science, biology, chemistry, engineering, communications, and business. Some of the major features and strengths of this textbook Numerous, carefully explained examples and applications facilitate learning. More than 1,600 exercises, ranging from elementary to challenging, are included with hints/answers to all odd-numbered exercises. Descriptions of proof techniques are accessible and lively. Students benefit from the historical discussions throughout the textbook.
This book clearly describes the many applications of graph theory to ecological questions, providing instruction and encouragement to researchers.
Graphical Enumeration deals with the enumeration of various kinds of graphs. Topics covered range from labeled enumeration and George Pólya's theorem to rooted and unrooted trees, graphs and digraphs, and power group enumeration. Superposition, blocks, and asymptotics are also discussed. A number of unsolved enumeration problems are presented. Comprised of 10 chapters, this book begins with an overview of labeled graphs, followed by a description of the basic enumeration theorem of Pólya. The next three chapters count an enormous variety of trees, graphs, and digraphs. The Power Group Enumeration Theorem is then described together with some of its applications, including the enumeration of self-complementary graphs and digraphs and finite automata. Two other chapters focus on the counting of superposition and blocks, while another chapter is devoted to asymptotic numbers that are developed for several different graphical structures. The book concludes with a comprehensive definitive list of unsolved graphical enumeration problems. This monograph will be of interest to both students and practitioners of mathematics.