Download Free Limited Information Bayesian Model Averaging For Dynamic Panels With An Application To A Trade Gravity Model Book in PDF and EPUB Free Download. You can read online Limited Information Bayesian Model Averaging For Dynamic Panels With An Application To A Trade Gravity Model and write the review.

This paper extends the Bayesian Model Averaging framework to panel data models where the lagged dependent variable as well as endogenous variables appear as regressors. We propose a Limited Information Bayesian Model Averaging (LIBMA) methodology and then test it using simulated data. Simulation results suggest that asymptotically our methodology performs well both in Bayesian model averaging and selection. In particular, LIBMA recovers the data generating process well, with high posterior inclusion probabilities for all the relevant regressors, and parameter estimates very close to their true values. These findings suggest that our methodology is well suited for inference in short dynamic panel data models with endogenous regressors in the context of model uncertainty. We illustrate the use of LIBMA in an application to the estimation of a dynamic gravity model for bilateral trade.
Bayesian Model Averaging (BMA) provides a coherent mechanism to address the problem of model uncertainty. In this paper we extend the BMA framework to panel data models where the lagged dependent variable as well as endogenous variables appear as regressors. We propose a Limited Information Bayesian Model Averaging (LIBMA) methodology and then test it using simulated data. Simulation results suggest that asymptotically our methodology performs well both in Bayesian model selection and averaging. In particular, LIBMA recovers the data generating process very well, with high posterior inclusion probabilities for all the relevant regressors, and parameter estimates very close to the true values. These findings suggest that our methodology is well suited for inference in dynamic panel data models with short time periods in the presence of endogenous regressors under model uncertainty.
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
The book investigates the EU preferential trade policy and, in particular, the impact it had on trade flows from developing countries. It shows that the capability of the "trade as aid" model to deliver its expected benefits to these countries crucially differs between preferential schemes and sectors. The book takes an eclectic but rigorous approach to the econometric analysis by combining different specifications of the gravity model. An in-depth presentation of the gravity model is also included, providing significant insights into the distinctive features of this technique and its state-of-art implementation. The evidence produced in the book is extensively applied to the analysis of the EU preferential policies with substantial suggestions for future improvement. Additional electronic material to replicate the book's analysis (datasets and Gams and Stata 9.0 routines) can be found in the Extra Materials menu on the website of the book.
Written by one of the world's leading researchers and writers in the field, Econometric Analysis of Panel Data has become established as the leading textbook for postgraduate courses in panel data. This new edition reflects the rapid developments in the field covering the vast research that has been conducted on panel data since its initial publication. Featuring the most recent empirical examples from panel data literature, data sets are also provided as well as the programs to implement the estimation and testing procedures described in the book. These programs will be made available via an accompanying website which will also contain solutions to end of chapter exercises that will appear in the book. The text has been fully updated with new material on dynamic panel data models and recent results on non-linear panel models and in particular work on limited dependent variables panel data models.
The Oxford Handbook of Panel Data examines new developments in the theory and applications of panel data. It includes basic topics like non-stationary panels, co-integration in panels, multifactor panel models, panel unit roots, measurement error in panels, incidental parameters and dynamic panels, spatial panels, nonparametric panel data, random coefficients, treatment effects, sample selection, count panel data, limited dependent variable panel models, unbalanced panel models with interactive effects and influential observations in panel data. Contributors to the Handbook explore applications of panel data to a wide range of topics in economics, including health, labor, marketing, trade, productivity, and macro applications in panels. This Handbook is an informative and comprehensive guide for both those who are relatively new to the field and for those wishing to extend their knowledge to the frontier. It is a trusted and definitive source on panel data, having been edited by Professor Badi Baltagi-widely recognized as one of the foremost econometricians in the area of panel data econometrics. Professor Baltagi has successfully recruited an all-star cast of experts for each of the well-chosen topics in the Handbook.
Every year roughly 100,000 fatal and injury crashes occur in the United States involving large trucks and buses. The Federal Motor Carrier Safety Administration (FMCSA) in the U.S. Department of Transportation works to reduce crashes, injuries, and fatalities involving large trucks and buses. FMCSA uses information that is collected on the frequency of approximately 900 different violations of safety regulations discovered during (mainly) roadside inspections to assess motor carriers' compliance with Federal Motor Carrier Safety Regulations, as well as to evaluate their compliance in comparison with their peers. Through use of this information, FMCSA's Safety Measurement System (SMS) identifies carriers to receive its available interventions in order to reduce the risk of crashes across all carriers. Improving Motor Carrier Safety Measurement examines the effectiveness of the use of the percentile ranks produced by SMS for identifying high-risk carriers, and if not, what alternatives might be preferred. In addition, this report evaluates the accuracy and sufficiency of the data used by SMS, to assess whether other approaches to identifying unsafe carriers would identify high-risk carriers more effectively, and to reflect on how members of the public use the SMS and what effect making the SMS information public has had on reducing crashes.
The world economy is experiencing a very strong but uneven recovery, with many emerging market and developing economies facing obstacles to vaccination. The global outlook remains uncertain, with major risks around the path of the pandemic and the possibility of financial stress amid large debt loads. Policy makers face a difficult balancing act as they seek to nurture the recovery while safeguarding price stability and fiscal sustainability. A comprehensive set of policies will be required to promote a strong recovery that mitigates inequality and enhances environmental sustainability, ultimately putting economies on a path of green, resilient, and inclusive development. Prominent among the necessary policies are efforts to lower trade costs so that trade can once again become a robust engine of growth. This year marks the 30th anniversary of the Global Economic Prospects. The Global Economic Prospects is a World Bank Group Flagship Report that examines global economic developments and prospects, with a special focus on emerging market and developing economies, on a semiannual basis (in January and June). Each edition includes analytical pieces on topical policy challenges faced by these economies.
As the nation's economic activities, security concerns, and stewardship of natural resources become increasingly complex and globally interrelated, they become ever more sensitive to adverse impacts from weather, climate, and other natural phenomena. For several decades, forecasts with lead times of a few days for weather and other environmental phenomena have yielded valuable information to improve decision-making across all sectors of society. Developing the capability to forecast environmental conditions and disruptive events several weeks and months in advance could dramatically increase the value and benefit of environmental predictions, saving lives, protecting property, increasing economic vitality, protecting the environment, and informing policy choices. Over the past decade, the ability to forecast weather and climate conditions on subseasonal to seasonal (S2S) timescales, i.e., two to fifty-two weeks in advance, has improved substantially. Although significant progress has been made, much work remains to make S2S predictions skillful enough, as well as optimally tailored and communicated, to enable widespread use. Next Generation Earth System Predictions presents a ten-year U.S. research agenda that increases the nation's S2S research and modeling capability, advances S2S forecasting, and aids in decision making at medium and extended lead times.
This book is a collection of papers for the Special Issue “Quantitative Methods for Economics and Finance” of the journal Mathematics. This Special Issue reflects on the latest developments in different fields of economics and finance where mathematics plays a significant role. The book gathers 19 papers on topics such as volatility clusters and volatility dynamic, forecasting, stocks, indexes, cryptocurrencies and commodities, trade agreements, the relationship between volume and price, trading strategies, efficiency, regression, utility models, fraud prediction, or intertemporal choice.