Download Free Light Scattering In Solids I Book in PDF and EPUB Free Download. You can read online Light Scattering In Solids I and write the review.

With contributions by numerous experts
This volume treats new materials (nanotubes and quantum dots) and new techniques (synchrotron radiation scattering and cavity confined scattering). In the past five years, Raman and Brillouin scattering have taken a place among the most important research and characterization methods for carbon nanotubes. Among the novel techniques discussed in this volume are those employing synchrotron radiation as a light source.
Raman scattering is now being applied with increasing success to a wide range of practical problems at the cutting edge of materials science. The purpose of this book is to make Raman spectroscopy understandable to the non-specialist and thus to bring it into the mainstream of routine materials characterization. The book is pedagogical in approach and focuses on technologically important condensed-matter systems in which the specific use of Raman spectroscopy yields new and useful information. Included are chapters on instrumentation, bulk semiconductors and alloys, heterostructures, high-Tc superconductors, catalysts, carbon-based materials, wide-gap and super-hard materials, and polymers.
This is the sixth volume of a well-established and popular series in which expert practitioners discuss topical aspects of light scattering in solids. This volume discusses recent results of Raman spectroscopy of high Tc superconductors, organic polymers, rare earth compounds, semimagnetic superconductors, and silver halides, as well as developments in the rapidly growing field of time-resolved Raman spectroscopy. Emphasis is placed on obtaining information about elementary excitations, the basic properties of materials, and the use of Raman spectroscopy as an analytical tool. This volume may be regarded as an encyclopedia of condensed matter physics from the viewpoint of the Raman spectroscopist. It will be useful to advanced students and to all researchers who apply Raman spectroscopy in their work.
This volume treats new materials (nanotubes and quantum dots) and new techniques (synchrotron radiation scattering and cavity confined scattering). In the past five years, Raman and Brillouin scattering have taken a place among the most important research and characterization methods for carbon nanotubes. Among the novel techniques discussed in this volume are those employing synchrotron radiation as a light source.
The Second USA-USSR Symposium on Light Scattering in Con densed Matter was held in New York City 21-25 May 1979. The present volume is the proceedings of that conference, and contains all manuscripts received prior to 1 August 1979, representing scientific contributions presented. A few manus cripts were not received, but for completeness the corresponding abstract is printed. No record was kept of the discussion, so that some of the flavor of the meeting is missing. This is par ticularly unfortunate in the case of some topics which were in a stage of rapid development and where the papers presented sti mulated much discussion - such as the sessions on spatial dis persion and resonance inelastic (Brillouin or Raman) scattering in crystals, enhanced Raman scattering from molecules on metal surfaces, and the onset of turbulence in fluids. The background and history of the US-USSR Seminar-Symposia on light scattering was given in the preface to the proceedings of the First Symposium held in Moscow May 1975, published as "Theory of Light Scattering in Condensed Matter" ed. B. Bendow, J. L. Birman, V. M. Agranovich (Plenum Press, N. Y. 1976). Strong scientific interest on both sides in continuing this series resulted in a plan for the second symposium to be held in New York in 1977. For a variety of reasons it was necessary to cancel the planned 1977 event, almost at the last minute.
This book is devoted to the problem of inelastic light scattering in semiconductors, i.e., to processes in which a photon impinges upon a serniconductor, creating or anihilating one or several quasi-particles, and then emerges with an energy somewhat different from that of the incident photon. In light scattering spectroscopy the incident photons are monochromatic; one measures the energy distribution of the scat tered photons with a spectrometer. Because of its monochromaticity, power, and collimation, lasers are ideal sources for light scattering spectroscopy. Consequently, developments in the field of light scattering have followed, in recent years, the developments in laser technology. The scattering efficiencies are usually weak and thus light scattering spectroscopy requires sophisticated double and tripie monochromators with high stray light rejection ratio. Both, powerful lasers and good monochromators are specially important for studying the scattering of light to which the sampies of interest are opaque, as is the case in most semiconductors. This explains why these materials are relatively late corners to the field of light scattering. In spite of these difficulties, the field of light scattcring in semi conductors has experienced a boom in recent years, and reached a certain degree of maturity. Because of space limitations, the editor was faced with the necessity of making a choice in the subjects to be included. In spite of the natural bias towards his own research interests he hopes to have gathered a number of articles representative of present-day research in the field.