Download Free Ligand Macromolecular Interactions In Drug Discovery Book in PDF and EPUB Free Download. You can read online Ligand Macromolecular Interactions In Drug Discovery and write the review.

In this authoritative book, experts in the field highlight the main principles and methodologies currently utilized in the study of molecular interactions between compounds. This is as an ideal guide to those striving to further our knowledge of medicines.
This book is indexed in Chemical Abstracts ServiceThe interactions of proteins with other molecules are important in many cellular activities. Investigations have been carried out to understand the recognition mechanism, identify the binding sites, analyze the the binding affinity of complexes, and study the influence of mutations on diseases. Protein interactions are also crucial in structure-based drug design.This book covers computational analysis of protein-protein, protein-nucleic acid and protein-ligand interactions and their applications. It provides up-to-date information and the latest developments from experts in the field, using illustrations to explain the key concepts and applications. This volume can serve as a single source on comparative studies of proteins interacting with proteins/DNAs/RNAs/carbohydrates and small molecules.
This title covers a wide range of topics relevant to the development of drugs. It provides a comprehensive description of the major methodological strategies available for rational drug discovery.
With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins
Applied Biophysics for Drug Discovery is a guide to new techniques and approaches to identifying and characterizing small molecules in early drug discovery. Biophysical methods are reasserting their utility in drug discovery and through a combination of the rise of fragment-based drug discovery and an increased focus on more nuanced characterisation of small molecule binding, these methods are playing an increasing role in discovery campaigns. This text emphasizes practical considerations for selecting and deploying core biophysical method, including but not limited to ITC, SPR, and both ligand-detected and protein-detected NMR. Topics covered include: • Design considerations in biophysical-based lead screening • Thermodynamic characterization of protein-compound interactions • Characterizing targets and screening reagents with HDX-MS • Microscale thermophoresis methods (MST) • Screening with Weak Affinity Chromatography • Methods to assess compound residence time • 1D-NMR methods for hit identification • Protein-based NMR methods for SAR development • Industry case studies integrating multiple biophysical methods This text is ideal for academic investigators and industry scientists planning hit characterization campaigns or designing and optimizing screening strategies.
The book "Drug Selectivity - An Evolving Concept in Medicinal Chemistry" provides a current overview and comprehensive compilation for medicinal chemists that discusses the effects of aiming for multiple targets on the entire drug development process. The result is a broad survey of current and future strategies for drug selectivity in medicinal chemistry with theoretical but also practical aspects. Different strategies are presented and evaluated, such as various design approaches, merged multiple ligands, discovery technologies and a broad range of successful examples of unselective drugs taken from all major disease areas. With its wide-ranging view of an emerging new paradigm in drug development, this handbook is of prime importance for every medicinal and pharmaceutical chemist.
The binding of small ligands to biological molecules is central to most aspects of biological function. The past twenty years has seen the development of an increasing armoury of biophysical methods that not only detect such binding, but also provide varying degrees of information about the kinetics, thermodynamics and structural aspects of the process. These methods have received increasing attention with the growth in more rational approaches to drug discovery and design. This book reviews the latest advances in the application of biophysics to the study of ligand binding. It provides a complete overview of current techniques to identify ligands, characterise their binding sites and understand their binding mechanisms. Particular emphasis is given to the combined use of different techniques and their relative strengths and weaknesses. Consistency in the way each technique is described makes it easy for readers to select the most suitable protocol for their research. The introduction explains why some techniques are more suitable than others and emphasizes the possible synergies between them. The following chapters, all written by a specialist in the particular technique, focus on each method individually. The book finishes by describing how several complimentary techniques can be used together for maximum effectiveness. This book is suitable for biomolecular scientists at graduate or post-doctoral level in academia and industry. Biologists and chemists will also find it a useful introduction to the techniques available.
Proteins are the cell’s workers, their messengers and overseers. In these roles, proteins specifically bind small molecules, nucleic acid and other protein partners. Cellular systems are closely regulated and biologically significant changes in populations of particular protein complexes correspond to very small variations of their thermodynamics or kinetics of reaction. Interfering with the interactions of proteins is the dominant strategy in the development of new pharmaceuticals. Protein Ligand Interactions: Methods and Applications, Second Edition provides a complete introduction to common and emerging procedures for characterizing the interactions of individual proteins. From the initial discovery of natural substrates or potential drug leads, to the detailed quantitative understanding of the mechanism of interaction, all stages of the research process are covered with a focus on those techniques that are, or are anticipated to become, widely accessible and performable with mainstream commercial instrumentation. Written in the highly successful Methods in Molecular Biology series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Protein Ligand Interactions: Methods and Applications, Second Edition serves as an ideal guide for researchers new to the field of biophysical characterization of protein interactions – whether they are beginning graduate students or experts in allied areas of molecular cell biology, microbiology, pharmacology, medicinal chemistry or structural biology.
Introducing the most recent advances in crystallography, nuclear magnetic resonance, molecular modeling techniques, and computational combinatorial chemistry, this unique, interdisciplinary reference explains the application of three-dimensional structural information in the design of pharmaceutical drugs. Furnishing authoritative analyses by world-renowned experts, Structure-Based Drug Design discusses protein structure-based design in optimizing HIV protease inhibitors and details the biochemical, genetic, and clinical data on HIV-1 reverse transcriptase presents recent results on the high-resolution three-dimensional structure of the catalytic core domain of HIV-1 integrase as a foundation for divergent combination therapy focuses on structure-based design strategies for uncovering receptor antagonists to treat inflammatory diseases demonstrates a systematic approach to the design of inhibitory compounds in cancer treatment reviews current knowledge on the Interleukin-1 (IL-1) system and progress in the development of IL-1 modulators describes the influence of structure-based methods in designing capsid-binding inhibitors for relief of the common cold and much more!
The rational, structure-based approach has become standard in present-day drug design. As a consequence, the availability of high-resolution structures of target proteins is more often than not the basis for an entire drug development program. Protein structures suited for rational drug design are almost exclusively derived from crystallographic studies, and drug developers are relying heavily on the power of this method. Here, researchers from leading pharmaceutical companies present valuable first-hand information, much of it published for the first time. They discuss strategies to derive high-resolution structures for such important target protein classes as kinases or proteases, as well as selected examples of successful protein crystallographic studies. A special section on recent methodological developments, such as for high-throughput crystallography and microcrystallization, is also included. A valuable companion for crystallographers involved in protein structure determination as well as drug developers pursuing the structure-based approach for use in their daily work.