Download Free Life Cycle Cost Analysis For Indot Pavement Design Procedures Book in PDF and EPUB Free Download. You can read online Life Cycle Cost Analysis For Indot Pavement Design Procedures and write the review.

Given the aging of highway pavements, high traffic levels, and uncertainty of sustained preservation funding, there is a need for balanced decision-making tools such as LCCA to ensure long-term and cost-effective pavement investments. It has been shown in past research that more effective long-term pavement investment could be made at lower cost using LCCA. Current LCCA-based pavement design and preservation practice in Indiana could be further enhanced by due consideration of user costs. Also, the existing FHWA LCCA software could be further enhanced for increased versatility, flexibility, and more specific applicability to the needs of Indiana, particularly with regard to treatment cost estimation and development of alternative feasible preservation strategies (rehabilitation and maintenance types and timings). The study documented/developed several sets of alternative pavement design and preservation strategies consistent with existing and foreseen Indiana practice. The preservation strategies were developed using two alternative criteria – trigger values (pavement condition thresholds) and predefined time intervals (based on treatment service lives) and are intended for further study before they can be used for practice. These strategies were developed on the basis of historical pavement management data, existing INDOT Design Manual standards, and a survey of experts. The study also found that with a few enhancements, FHWA’s current LCCA methodology and software (RealCost) could be adapted for use by INDOT for purposes of decision support for pavement investments and proceeded to make such enhancements.
TRB's second Strategic Highway Research Program (SHRP 2) Report S2-R26-RR-2: Guidelines for the Preservation of High-Traffic-Volume Roadways explores the state of the practice for preservation treatments on high- and low-volume asphalt and concrete roadways. The report also includes suggested guidelines on the application of preservation treatments on high-volume roadways.
TRB's second Strategic Highway Research Program (SHRP 2) Report S2-R26-RR-1: Preservation Approaches for High-Traffic-Volume Roadways documents the state of the practice of preservation treatment on asphalt and concrete pavements on high- and low-volume roadways. The report also includes general guidelines on the application of preservation treatments on high-volume roadways. The same project that produced SHRP 2 Report S2-R26-RR-1 also produced SHRP 2 Report S2-R26-RR-2: Guidelines for the Preservation of High-Traffic-Volume Roadways, which explores the state of the practice for preservation treatments on high- and low-volume asphalt and concrete roadways. The report also includes suggested guidelines on the application of preservation treatments on high-volume roadways.
This compilation on sustainability issues in civil engineering comprises contributions from international experts who have been working in the area of sustainability in civil engineering. Many of the contributions have been presented as keynote lectures at the International Conference on Sustainable Civil Infrastructure (ICSCI) held in Hyderabad, India. The book has been divided into core themes of Sustainable Transportation Systems, Sustainable Geosystems, Sustainable Environmental and Water Resources and Sustainable Structural Systems. Use of sustainability principles in engineering has become an important component of the process of design and in this context, design and analysis approaches in civil engineering are being reexamined to incorporate the principles of sustainable designs and construction in practice. Developing economies are on the threshold of rapid infrastructure growth and there is a need to compile the developments in various branches of civil engineering and highlight the issues. It is this need that prompted the composition of this book. The contents of this book will be useful to students, professionals, and researchers working on sustainability related problems in civil engineering. The book also provides a perspective on sustainability for practicing civil engineers who are not directly researching the problems but are affected by the concerns in the course of their profession. The book can also serve to highlight to policy makers and governing bodies the need to have a mandate for sustainable infrastructural development.
TRB’s National Cooperative Highway Research Program (NCHRP) Report 713: Estimating Life Expectancies of Highway Assets, Volume 2: Final Report describes the technical issues and data needs associated with estimating asset life expectancies and the practices used in a number of fields—such as the energy and financial industries—to make such estimates.
This book comprises selected proceedings of the 2nd International Conference of Construction, Infrastructure, and Materials (ICCIM 2021) focusing on topics such as structural engineering, construction materials, geotechnical engineering, transportation system and engineering, construction management, water resources engineering, and infrastructure development. Its content will be useful to researchers, educators, practitioners, and policymakers alike.
Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently. To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today’s interconnected world. As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design, construction, and maintenance of highway and airport pavement systems. To prepare the human capacity to develop and implement these solutions, many educators, policy-makers and practitioners have stressed the paramount importance of formally incorporating sustainability concepts in the civil engineering curriculum to educate and train future civil engineers well-equipped to address our current and future sustainability challenges. This book will prove a valuable resource in the hands of researchers, educators and future engineering leaders, most of whom will be working in multidisciplinary environments to address a host of next-generation sustainable transportation infrastructure challenges. "This book proposes a broad detailed overview of the actual scientific knowledge about pavements linked to climate change, energy and sustainability at the international level in an original multidimensional/multi-effects way. By the end, the reader will be aware of the whole global issues to care about for various pavement technical features around the world, among which the implications of modelling including data collection, challenging resources saving and infrastructures services optimisation. This is a complete and varied work, rare in the domain." Dr. Agnes Jullien Research Director Director of Environmental, Development, Safety and Eco-Design Laboratory (EASE) Department of Development, Mobility and Environment Ifsttar Centre de Nantes Cedex- France “An excellent compilation of latest developments in the field of sustainable pavements. The chapter topics have been carefully chosen and are very well-organized with the intention of equipping the reader with the state-of-the-art knowledge on all aspects of pavement sustainability. Topics covered include pavement Life Cycle Analysis (LCA), pervious pavements, cool pavements, photocatalytic pavements, energy harvesting pavements, etc. which will all be of significant interest to students, researchers, and practitioners of pavement engineering. This book will no doubt serve as an excellent reference on the topic of sustainable pavements.” Dr. Wei-Hsing Huang Editor-in-Chief of International Journal of Pavement Research and Technology (IJPRT) and Professor of Civil Engineering National Central University Taiwan
This text explores the fundamental principles and applications of the economic and cost analysis of products and systems, using the life-cycle process. A graded methodology is followed and the book emphasizes the linkage between economic competitiveness and economic analysis.