Download Free Life Cycle Assessment Of Forest Products Book in PDF and EPUB Free Download. You can read online Life Cycle Assessment Of Forest Products and write the review.

This brief contains information on the reduction of environmental impact and explains how it is a key driver for the R&D of new forest products. The authors, experts in the field, describe how Life Cycle Assessment (LCA) is used to assess the environmental impact of such products, e.g. in order to guide R&D or attract investments. The authors describe the main challenges of carrying out LCAs on forest products, make recommendations for managing these challenges, and discuss future research needs. LCA case studies are used to illustrate the challenges, covering a variety of forest products: building components, biofuels, industrial chemicals, textile fibres and clothing. Described challenges include the planning of LCA studies (e.g.how can one use LCA in R&D?), the modelling of product systems (how can one handle multi-functionality and uncertainties related to waste handling and geographical location of future production?) and environmental impact (how can one assess water and land use impact, and the climate impact of biomass?).
Eco-efficient Construction and Building Materials reviews ways of assessing the environmental impact of construction and building materials. Part one discusses the application of life cycle assessment (LCA) methodology to building materials as well as eco-labeling. Part two includes case studies showing the application of LCA methodology to different types of building material, from cement and concrete to wood and adhesives used in building. Part three includes case studies applying LCA methodology to particular structures and components. - Reviews ways of assessing the environmental impact of construction and building materials - Provides a thorough overview, including strengths and shortcomings, of the life cycle assessment (LCA) and eco-labeling of eco-efficient construction and building materials - Includes case studies showing the application of LCA methodology to different types of building material, from cement and concrete to wood and adhesives used in building
This book is dedicated to global perspectives on sustainable forest management. It focuses on a need to move away from purely protective management of forests to innovative approaches for multiple use and management of forest resources. The book is divided into two sections; the first section, with thirteen chapters deals with the forest management aspects while the second section, with five chapters is dedicated to forest utilization. This book will fill the existing gaps in the knowledge about emerging perspectives on sustainable forest management. It will be an interesting and helpful resource to managers, specialists and students in the field of forestry and natural resources management.
The first book of its kind, the Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable Products will become an invaluable resource for environmentally progressive manufacturers and suppliers, product and process designers, executives and managers, and government officials who want to learn about this essential component of environmental sustainability. As the last several decades have seen a dramatic rise in the application of Life Cycle Assessment (LCA) in decision making, the interest in the life cycle concept as an environmental management and sustainability tool continues to grow. The LCA Handbook offers a look at the role that life cycle information, in the hands of companies, governments, and consumers, may have in improving the environmental performance of products and technologies. It concisely and clearly presents the various aspects of LCA in order to help the reader better understand the subject. The content of the book was designed with a certain flow in mind. After a high-level overview to describe current views and state-of-the-practice of LCA, it presents chapters that address specific LCA methodological issues including creating life cycle inventory, life cycle impact assessment, and capturing eco-systems services. These are followed by example applications of LCA in the agri-food industry; sustainable supply chain management; solid waste management; mining and mineral extraction; forest products; buildings; product innovation; and sustainable chemistry and engineering. The international success of the sustainability paradigm needs the participation of many stakeholders, including citizens, corporations, academia, and NGOs. The handbook links LCA and responsible decision making and how the life cycle concept is a critical element in environmental sustainability. It covers issues such as building capacity in developing countries and emerging economies so that they are more capable of harnessing the potential in LCA for sustainable development. Governments play a very important role with the leverage they have through procurement, regulation, international treaties, tax incentives, public outreach, and other policy tools. This compilation points to the clear trend for incorporating life cycle information into the design and development processes for products and policies, just as quality and safety concerns are now addressed throughout product design and development.
This state-of-the-art compendium, combining theory with practical examples, looks at the entire biochar supply chain.
Wood-polymer composites (WPC) are materials in which wood is impregnated with monomers that are then polymerised in the wood to tailor the material for special applications. The resulting properties of these materials, from lightness and enhanced mechanical properties to greater sustainability, has meant a growing number of applications in such areas as building, construction and automotive engineering. This important book reviews the manufacture of wood-polymer composites, how their properties can be assessed and improved and their range of uses.After an introductory chapter, the book reviews key aspects of manufacture, including raw materials, manufacturing technologies and interactions between wood and synthetic polymers. Building on this foundation, the following group of chapters discusses mechanical and other properties such as durability, creep behaviour and processing performance. The book concludes by looking at orientated wood-polymer composites, wood-polymer composite foams, at ways of assessing performance and at the range of current and future applications.With its distinguished editors and international team of contributors, Wood-polymer composites is a valuable reference for all those using and studying these important materials. - Provides a comprehensive survey of major new developments in wood-polymer composites - Reviews the key aspects of manufacture, including raw materials and manufacturing technologies - Discusses properties such as durability, creep behaviour and processing performance
The United States produces 25% of the world's wood output, and wood supports a major segment of the U.S. industrial base. Trees provide fiber, resins, oils, pulp, food, paper, pharmaceuticals, fuel, many products used in home construction, and numerous other products. The use of wood as a raw material must consider production efficiencies and natural resource conservation as well as efficient, profitable use of solid wood, its residues, and by-products. To better assess the use of wood as a raw material, the U.S. Department of Agriculture's Forest Service asked the National Research Council's Board on Agriculture to bring together experts to review the analytical techniques used to follow the life-cycle of wood productionâ€"from tree to productâ€"and assess the environmental impacts. This resulting book provides a base of current knowledge, identifying what data are lacking, where future efforts should be focused, and what is known about the methodologies used to assess environmental impacts. The book also focuses on national and international efforts to develop integrated environmental, economic, and energy accounting methologies.
The Guidelines for Social Life Cycle Assessment of Products provides a map, a skeleton and a flash light for stakeholders engaging in the assessment of social and socio-economic impacts of products life cycle. The map describes the context, the key concepts, the broader field in which tools and techniques are getting developed and their scope of application. The skeleton presents key elements to consider and provide guidance for the goal and scope, inventory, impact assessment and interpretation phases of a social life cycle assessment. The flash light highlights areas where further research is needed. Social Life Cycle Assessment is a technique available to account for stories and inform systematically on impacts that otherwise would be lost in the vast and fast moving sea of our modern world. May it help stakeholders to effectively and efficiently engage to improve social and socio-economic conditions of production and consumption