Download Free Letter Of Intent To Build A Miniboone Near Detector Book in PDF and EPUB Free Download. You can read online Letter Of Intent To Build A Miniboone Near Detector and write the review.

There is accumulating evidence for a difference between neutrino and antineutrino oscillations at the H" eV2 scale. The MiniBooNE experiment observes an unexplained excess of electron-like events at low energies in neutrino mode, which may be due, for example, to either a neutral current radiative interaction, sterile neutrino decay, or to neutrino oscillations involving sterile neutrinos and which may be related to the LSND signal. No excess of electron-like events ( -0.5 ± 7.8 ± 8.7), however, is observed so far at low energies in antineutrino mode. Furthermore, global 3+1 and 3+2 sterile neutrino fits to the world neutrino and antineutrino data suggest a difference between neutrinos and antineutrinos with significant (sin2 2[theta]{sub [mu]{mu}} H"35%) {bar [nu]}{sub {mu}} disappearance. In order to test whether the low-energy excess is due to neutrino oscillations and whether there is a difference between [nu]{sub {mu}} and {bar [nu]}{sub {mu}} disappearance, we propose building a second MiniBooNE detector at (or moving the existing MiniBooNE detector to) a distance of H"00 m from the Booster Neutrino Beam (BNB) production target. With identical detectors at different distances, most of the systematic errors will cancel when taking a ratio of events in the two detectors, as the neutrino flux varies as 1/r2 to a calculable approximation. This will allow sensitive tests of oscillations for both {nu}{sub e} and {bar {nu}} appearance and {nu}{sub {mu}} and {bar {nu}}{sub {mu}} disappearance. Furthermore, a comparison between oscillations in neutrino mode and antineutrino mode will allow a sensitive search for CP and CPT violation in the lepton sector at short baseline ([Delta]m2> 0.1 eV2). Finally, by comparing the rates for a neutral current (NC) reaction, such as NC [pi]° scattering or NC elastic scattering, a direct search for sterile neutrinos will be made. The initial amount of running time requested for the near detector will be a total of H"E20 POT divided between neutrino mode and antineutrino mode, which will provide statistics comparable to what has already been collected in the far detector. A thorough understanding of this short-baseline physics will be of great importance to future long-baseline oscillation experiments.
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
The Lake Louise Winter Institute is held annually to explore recent trends in high energy physics in an informal setting. Pedagogical and review lectures are presented by invited experts. A topical workshop is held in conjunction with the Institute, with presentations by participants. Contents: Study of Charmed Particles Production and Decay in Neutrino Interactions (E Barbuto); Measurement of Triple Gauge-Boson Couplings in ALEPH (R Bruneliere); Recent Studies on Sparticles and MSSM Higgses at CMS (M Chiorboli); Measurement of Single Z Production at LEP2 (I Fleck); Open Heavy Flavour Production at HERA (J Kroseberg); Quantum Electrodynamics in Strong Magnetic Fields (D A Leahy); Spectroscopy of Baryons Containing Two Heavy Quarks (D U Matrasulov); Fermion Pair Production at LEPII and Limits on New Physics Processes (A J M Muijs); Recent Results on Jet Fragmentation from CDF (A N Safonov); Single Spin Azimuthal Asymmetries in Semi-Inclusive Electroproduction of Pions and Kaons (R-C Seidl); and other papers.,Readership: Graduate students, academics and researchers in high energy and theoretical physics.
The Lake Louise Winter Institute is held annually to explore recent trends in high energy physics in an informal setting. Pedagogical and review lectures are presented by invited experts. A topical workshop is held in conjunction with the Institute, with presentations by participants.
Neutrino '80 held at the Ettore Majorana Center for Scientific Culture in Erice, was the tenth of a series of International Confer ences on Neutrino Physics and Astrophysics. It also marked the fiftieth anniversary of the first mention, by Wolfgang Pauli, of a neutral particle emitted in beta decay. The conference occurred at a very propitious time in neutrino physics: the possibility of a non-zero neutrino mass and of neutrino oscillations has obvious implications of great importance in neutrino astrophysics and cosmology, as well as in the grand unified theories. In order to encourage contacts and discussions among the various experts in different branches of neutrino physics and astrophysics, the conference was based only on plenary sessions, and mainly on review talks. Short communications were accepted only if they bore new and unexpected results which could not be covered in the appro priate review. I would like to thank the participants for their understanding of this often unpopular rule. I take this opportunity to express my gratitude to the members of the International Advisory Committee, to George Marx, Secretary of the on-going International Neutrino Committee, to the rapporteurs and session chairmen. Thanks are especially due to Antonino Zichichi, Director of the Ettore Majorana Centre for Scientific Culture, for the warm and generous hospitality extended to us, and to Alberto Gabriele and Pinola Savalli for their untiring efforts to make our stay in Erice as enjoyable as fruitful.
The President's FY 2003 Budget Request for the National Science Foundation (NSF) under the Major Research Equipment and Facilities Construction Account called for a National Research Council (NRC) review of the scientific merits of IceCube and other proposed U.S. neutrino projects in the context of current and proposed capabilities throughout the world. The NRC committee-the Neutrino Facilities Assessment Committee (NFAC)-was charged with providing scientific assessments of two possible future science initiatives: (1) IceCube, a very large volume detector of high-energy neutrinos proposed for the South Pole and (2) a possible deep underground science facility to be developed in the United States to pursue a broad range of fundamental questions in physics and astronomy. Fourteen persons were appointed to the committee, and the first meeting was held in June 2002, with delivery of the final report expected within 6 months. The committee's assessment was to be performed in the context of current and planned neutrino capabilities throughout the world. Specifically, the study was to address the unique capabilities of each class of new experiment and any possible redundancy between the two types of facility.
This book introduces the physics and chemistry of plastic scintillators (fluorescent polymers) that are able to emit light when exposed to ionizing radiation, discussing their chemical modification in the early 1950s and 1960s, as well as the renewed upsurge in interest in the 21st century. The book presents contributions from various researchers on broad aspects of plastic scintillators, from physics, chemistry, materials science and applications, covering topics such as the chemical nature of the polymer and/or the fluorophores, modification of the photophysical properties (decay time, emission wavelength) and loading of additives to make the material more sensitive to, e.g., fast neutrons, thermal neutrons or gamma rays. It also describes the benefits of recent technological advances for plastic scintillators, such as nanomaterials and quantum dots, which allow features that were previously not achievable with regular organic molecules or organometallics.
"Riveting."—Science A Forbes, Physics Today, Science News, and Science Friday Best Science Book Of 2018 Cosmologist and inventor of the BICEP (Background Imaging of Cosmic Extragalactic Polarization) experiment, Brian Keating tells the inside story of the mesmerizing quest to unlock cosmology’s biggest mysteries and the human drama that ensued. We follow along on a personal journey of revelation and discovery in the publish-or-perish world of modern science, and learn that the Nobel Prize might hamper—rather than advance—scientific progress. Fortunately, Keating offers practical solutions for reform, providing a vision of a scientific future in which cosmologists may finally be able to see all the way back to the very beginning.
The GNU Scientific Library (GSL) is a free numerical library for C and C++ programmers. It provides over 1,000 routines for solving mathematical problems in science and engineering. Written by the developers of GSL this reference manual is the definitive guide to the library. All the money raised from the sale of this book supports the development of the GNU Scientific Library. This is the third edition of the manual, and corresponds to version 1.12 of the library (updated January 2009).