Download Free Lectures On Number Theory Book in PDF and EPUB Free Download. You can read online Lectures On Number Theory and write the review.

Lectures on Number Theory is the first of its kind on the subject matter. It covers most of the topics that are standard in a modern first course on number theory, but also includes Dirichlet's famous results on class numbers and primes in arithmetic progressions.
The pioneering work of Pierre de Fermat has attracted the attention of mathematicians for over 350 years. This book provides an overview of the many properties of Fermat numbers and demonstrates their applications in areas such as number theory, probability theory, geometry, and signal processing. It is an ideal introduction to the basic mathematical ideas and algebraic methods connected with the Fermat numbers.
This volume contains lectures presented by Hugh L. Montgomery at the NSF-CBMS Regional Conference held at Kansas State University in May 1990. The book focuses on important topics in analytic number theory that involve ideas from harmonic analysis. One particularly valuable aspect of the book is that it collects material that was either unpublished or that had appeared only in the research literature. The book should be a useful resource for harmonic analysts interested in moving into research in analytic number theory. In addition, it is suitable as a textbook in an advanced graduate topics course in number theory.
. . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. " We have tried to remain as close as possible to the original text in pre serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "torsion free group" for "pure group. " One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.
This selection of expository essays by Paulo Ribenboim should be of interest to mathematicians from all walks. Ribenboim, a highly praised author of several popular titles, writes each essay in a light and humorous language without secrets, making them thoroughly accessible to everyone with an interest in numbers. This new collection includes essays on Fibonacci numbers, prime numbers, Bernoulli numbers, and historical presentations of the main problems pertaining to elementary number theory, such as Kummers work on Fermat's last theorem.
Carl Ludwig Siegel gave a course of lectures on the Geometry of Numbers at New York University during the academic year 1945-46, when there were hardly any books on the subject other than Minkowski's original one. This volume stems from Siegel's requirements of accuracy in detail, both in the text and in the illustrations, but involving no changes in the structure and style of the lectures as originally delivered. This book is an enticing introduction to Minkowski's great work. It also reveals the workings of a remarkable mind, such as Siegel's with its precision and power and aesthetic charm. It is of interest to the aspiring as well as the established mathematician, with its unique blend of arithmetic, algebra, geometry, and analysis, and its easy readability.
本书内容包括素数、无理数、同余、费马定理、连分数、不定方程、二次域、算术函数、分化等。
In the summer quarter of 1949, I taught a ten-weeks introductory course on number theory at the University of Chicago; it was announced in the catalogue as "Alge bra 251". What made it possible, in the form which I had planned for it, was the fact that Max Rosenlicht, now of the University of California at Berkeley, was then my assistant. According to his recollection, "this was the first and last time, in the his tory of the Chicago department of mathematics, that an assistant worked for his salary". The course consisted of two lectures a week, supplemented by a weekly "laboratory period" where students were given exercises which they were. asked to solve under Max's supervision and (when necessary) with his help. This idea was borrowed from the "Praktikum" of German universi ties. Being alien to the local tradition, it did not work out as well as I had hoped, and student attendance at the problem sessions so on became desultory. v vi Weekly notes were written up by Max Rosenlicht and issued week by week to the students. Rather than a literal reproduction of the course, they should be regarded as its skeleton; they were supplemented by references to stan dard text-books on algebra. Max also contributed by far the larger part of the exercises. None of ,this was meant for publication.
Challenging, accessible mathematical adventures involving prime numbers, number patterns, irrationals and iterations, calculating prodigies, and more. No special training is needed, just high school mathematics and an inquisitive mind. "A splendidly written, well selected and presented collection. I recommend the book unreservedly to all readers." — Martin Gardner.
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.