Download Free Lectures On Geothermal Resources And Their Development Book in PDF and EPUB Free Download. You can read online Lectures On Geothermal Resources And Their Development and write the review.

This book addresses the societal aspects of harnessing geothermal resources for different uses, such as power production, heating and cooling. It introduces a theoretical framework for a social scientific approach to the field, and presents a preliminary collection of empirical case studies on geothermal energy and society from across the world. By providing a conceptual and methodological framework to the study of geothermal energy and societies, it brings together information and analyses in the field that to date have been sparse and fragmented. The contributors explore the diverse aspects of the relationship between the harnessing of geothermal resources and the societies and local communities in which these developments take place. After introducing geothermal technologies, renewable energy concepts as well as their social and policy context and the regulative and environmental aspects of geothermal energy, the book analyzes and discusses twelve global case studies, and compares the social engagement tools applied with those used in other sectors. Of interest to researchers from a range of disciplines who wish to explore the issues surrounding energy and society, it is also a valuable resource for geothermal experts and postgraduate students wish to study the field in greater detail.
Geothermal Energy Systems provides design and analysis methodologies by using exergy and enhanced exergy tools (covering exergoenvironmental, exergoeconomic, exergetic life cycle assessment, etc.), environmental impact assessment models, and sustainability models and approaches. In addition to presenting newly developed advanced and integrated systems for multigenerational purposes, the book discusses newly developed environmental impact assessment and sustainability evaluation methods and methodologies. With case studies for integrated geothermal energy sources for multigenerational aims, engineers can design and develop new geothermal integrated systems for various applications and discover the main advantages of design choices, system analysis, assessment and development of advanced geothermal power systems. - Explains the ability of geothermal energy power systems to decrease global warming - Discusses sustainable development strategies for using geothermal energy sources - Provides new design conditions for geothermal energy sources-based district energy systems
Geothermal Power Generation, New Developments and Innovations, Second Edition provides an update to the advanced energy technologies that are urgently required to meet the challenges of economic development, climate change mitigation, and energy security. Edited by respected and leading experts in the field, this book provides a comprehensive overview of the major aspects of geothermal power production. Chapters cover resource discovery, resource characterization, energy conversion systems, design, economic considerations, and a range of fascinating and updated case studies from across the world.Geothermal resources are considered renewable and are currently the only renewable source able to generate baseload electricity while producing very low levels of greenhouse gas emissions, thus playing a key role in future energy needs. - Provides readers with a comprehensive and systematic overview of geothermal power generation - Presents an update to advanced energy technologies that are urgently required to meet the challenges of economic development, climate change mitigation, and energy security - Edited by authorities in the field and contributed to by global experts in their areas - Supports sustainability and the United Nations Sustainable Development Goals (UN SDGs) 7, 9, 11 and 13
Experts and key personnel straddling academia and related agencies and industries provide critical data for further exploration and research.
This book, based on lectures on natural and environmental resource economics, offers a nontechnical exposition of the modern theory of sustainability in the presence of resource scarcity. It applies an alternative take on environmental economics, focusing on the economics of the natural environment, including development, computation, and potential empirical importance of the concept of option value, as opposed to the standard treatment of the economics of pollution control. The approach throughout is primarily conceptual and theoretical, though empirical estimation and results are sometimes noted. Mathematics, ranging from elementary calculus to more formal dynamic optimization, is used, especially in the early chapters on the optimal management of exhaustible and renewable resources, but results are always given an economic interpretation. Diagrams and numerical examples are also used extensively. The first chapter introduces the classical economists as the first resource economists, in their discussion of the implications of a limited natural resource base (agricultural land) for the evolution of the wider economy. A later chapter returns to the same concerns, along with others stimulated by the energy and environmental “crises” of the 1970s and beyond. One section considers alternative measures of resource scarcity and empirical findings on their behavior over time. Another introduces the modern concept of sustainability with an intuitive development of the analytics. A chapter on the dynamics of environmental management motivates the concept of option value, shows how to compute it, then demonstrates its importance in an illustrative empirical example. The closing chapter, on climate change, first projects future changes and potential catastrophic impacts, then discusses the policy relevance of both option value and discounting for the very long run. This book is intended for resource and environmental economists and can be read by interested graduate and advanced undergraduate students in the field as well.
There are over 1300 active volcanoes worldwide and many more dormant or extinct. Some are developed as tourist destinations; others are not, but have great potential. Mount Fuji in Japan attracts over 100 million visitors per year and has immense cultural and spiritual significance, while a number of volcanic areas in national parks, for example Teide in Spain, Yellowstone in the US, Vesuvius in Italy and Tongariro in New Zealand, attract between one to four million tourists each year. In the last decade the designation of nearly 50 geoparks around the world has highlighted their potential for tourism development.This book provides the first global review and assessment of the sustainable use of active and dormant volcanic and geothermal environments for geotourism. The volcano-based tourism sector is further augmented through a closely linked range of geothermal resources and attractions, such as geysers and hot springs, which are discussed in detail throughout individual chapters covering all key volcanic and geothermal regions around the world. It is shown that volcano and geothermal tourism is a subsection of nature-based geotourism and incorporates a variety of other tourism categories such as adventure tourism, extreme tourism, ecotourism, green tourism, educational tourism, and hot spring tourism. This comprehensive book covers the most important issues of this growing tourism sector whilst incorporating relevant global research, making it an essential resource for all in the field.Includes colour plates.
Most high-temperature geothermal resources develop in volcanic regions, but very few have been successfully explored and developed despite the ever-growing need for renewable energy resources. This is particularly true of the many developing countries that exist in volcanic regions with potential geothermal resources. Because exploration techniques, which must be adapted from the oil industry, are expensive and uncertain, economic growth in these countries remains contingent on the availability and cost of oil. Bridging the gap between academic geologists and drilling engineers, Volcanology and Geothermal Energy is a practical and thorough guide to planning and operating a successful exploration project. It describes the potential geothermal reservoirs associated with volcanoes and volcanic regions and uses recent advances in volcanology to offer many examples of how geological field data give evidence of the location, nature, and size of a geothermal resource. Most high-temperature geothermal resources develop in volcanic regions, but very few have been successfully explored and developed despite the ever-growing need for renewable energy resources. This is particularly true of the many developing countries that exist in volcanic regions with potential geothermal resources. Because exploration techniques, which must be adapted from the oil industry, are expensive and uncertain, economic growth in these countries remains contingent on the availability and cost of oil. Bridging the gap between academic geologists and drilling engineers, Volcanology and Geothermal Energy is a practical and thorough guide to planning and operating a successful exploration project. It describes the potential geothermal reservoirs associated with volcanoes and volcanic regions and uses recent advances in volcanology to offer many examples of how geological field data give evidence of the location, nature, and size of a geothermal resource.