Download Free Lectures On General Relativity Cosmology And Quantum Black Holes Book in PDF and EPUB Free Download. You can read online Lectures On General Relativity Cosmology And Quantum Black Holes and write the review.

Whilst general relativity is not complex in its formulation, the physical interpretation of its mathematical descriptions gives rise to a range of exciting consequences in cosmology. A detailed understanding of general relativity is therefore a prerequisite for students wishing to pursue further courses or commence research projects in cosmology and its various captivating subfields including black holes and gravitational waves. This is not a book on general relativity per se and the author's treatment of this fundamental topic is concise, with the required differential geometry summarized in an appendix. Instead, the primary goal of this book is to allow students to understand in a critical way two pillars of modern theoretical physics: inflationary theory, and quantum black holes and the information-loss problem. Accordingly, the book extensively introduces black holes and cosmology before proceeding to the important issues found in inflation and the information-loss problem. Other important topics discussed in detail include the cosmological constant and its relation to dark energy and an introduction to quantum field theory on curved backgrounds. Including numerous exercise problems, the material provides a single rigorous text for advanced students in theoretical physics and mathematics requiring an introduction to the implications and interpretation of general relativity in areas of cosmology. Readers of this text will be well prepared to follow the theoretical developments in the field and undertake research projects as part of an MSc or PhD programme.
The supermassive black hole in the center of our Milky Way is the nearest such object and relatively easy to observe and study. Not surprisingly therefore, it is the best studied supermassive black hole. Many astrophysical and even general relativistic effects can be investigated in great detail. The Galactic Black Hole: Lectures on General Relativity and Astrophysics provides a systematic introduction to the physics/astrophysics and mathematics of black holes at a level suitable for graduate students, postdocs, and researchers in physics, astrophysics, astronomy, and applied mathematics. The focus is mainly on the supermassive black hole in the center of our Milky Way but the results can be easily generalized taking it as an example. Leading international experts provide first-hand accounts of the observational and theoretical aspects of this black hole. Topics range from the properties of the Schwarzschild metric and the collapse of a black hole, to quantum gravity, and from the structure of the Galaxy to accretion of matter and the emission properties of the Galactic Center black hole.
Here it is, in a nutshell: the history of one genius’s most crucial work – discoveries that were to change the face of modern physics. In the early 1900s, Albert Einstein formulated two theories that would forever change the landscape of physics: the Special Theory of Relativity and the General Theory of Relativity. Respected American academic Professor Tai Chow tells us the story of these discoveries. He details the basic ideas of Einstein, including his law of gravitation. Deftly employing his inimitable writing style, he goes on to explain the physics behind black holes, weaving into his account an explanation of the structure of the universe and the science of cosmology.
This book is based on a set of 18 class-tested lectures delivered to fourth-year physics undergraduates at Griffith University in Brisbane, and the book presents new discoveries by the Nobel-prize winning LIGO collaboration. The author begins with a review of special relativity and tensors and then develops the basic elements of general relativity (a beautiful theory that unifies special relativity and gravitation via geometry) with applications to the gravitational deflection of light, global positioning systems, black holes, gravitational waves, and cosmology. The book provides readers with a solid understanding of the underlying physical concepts; an ability to appreciate and in many cases derive important applications of the theory; and a solid grounding for those wishing to pursue their studies further. General Relativity: An Introduction to Black Holes, Gravitational Waves, and Cosmology also connects general relativity with broader topics. There is no doubt that general relativity is an active and exciting field of physics, and this book successfully transmits that excitement to readers.
Black Holes are still considered to be among the most mysterious and fascinating objects in our universe. Awaiting the era of gravitational astronomy, much progress in theoretical modeling and understanding of classical and quantum black holes has already been achieved. The present volume serves as a tutorial, high-level guided tour through the black-hole landscape: information paradox and blackhole thermodynamics, numerical simulations of black-hole formation and collisions, braneworld scenarios and stability of black holes with respect to perturbations are treated in great detail, as is their possible occurrence at the LHC. An outgrowth of a topical and tutorial summer school, this extensive set of carefully edited notes has been set up with the aim of constituting an advanced-level, multi-authored textbook which meets the needs of both postgraduate students and young researchers in the fields of modern cosmology, astrophysics and (quantum) field theory.
Assuming foundational knowledge of special and general relativity, this book guides the reader on issues surrounding black holes, wormholes and cosmology. Half of it is devoted to local strong field configurations (black holes and wormholes) in general relativity and the most relevant of alternative theories: scalar tensor, f(R) and multidimensional theories. The remaining half is on cosmology, including inflation and a unified description of the whole evolution of the universe. Much of the content is new in book publications, because it was previously found only in journal publications, e.g. regarding regular black holes, various scalar field solutions, wormholes and their stability. The original approach to nonlinear multidimensional gravity that is able to construct a unique perspective describing different phenomena is highlighted. Expository work is conducted for mechanism of symmetries and fundamental constants formation.