Download Free Lectures On General Quantum Correlations And Their Applications Book in PDF and EPUB Free Download. You can read online Lectures On General Quantum Correlations And Their Applications and write the review.

This book presents a distinctive way of understanding quantum correlations beyond entanglement, introducing readers to this less explored yet very fundamental aspect of quantum theory. It takes into account most of the new ideas involving quantum phenomena, resources, and applications without entanglement, both from a theoretical and an experimental point of view. This book serves as a reference for both beginner students and experienced researchers in physics and applied mathematics, with an interest in joining this novel venture towards understanding the quantum nature of the world.
The book gathers contributions from the fourth conference on Information Geometry and its Applications, which was held on June 12–17, 2016, at Liblice Castle, Czech Republic on the occasion of Shun-ichi Amari’s 80th birthday and was organized by the Czech Academy of Sciences’ Institute of Information Theory and Automation. The conference received valuable financial support from the Max Planck Institute for Mathematics in the Sciences (Information Theory of Cognitive Systems Group), Czech Academy of Sciences’ Institute of Information Theory and Automation, and Università degli Studi di Roma Tor Vergata. The aim of the conference was to highlight recent advances in the field of information geometry and to identify new research directions. To this end, the event brought together leading experts in the field who, in invited talks and poster sessions, discussed both theoretical work and achievements in the many fields of application in which information geometry plays an essential role.
This book explains the evolution of techniques and strategies in quantum computing, discussing the digital transition towards the quantum computing application in various sectors. The book provides a comprehensive insight into the quantum mechanics and quantum computing techniques and tools and how they have evolved and the impacted in supporting and flourishing business during the quantum computing era. This book includes chapters that discuss the most primitive quantum schemes to the most recent use of Internet, finance and radar technology, thus leveraging greater use of new technologies like security and Internet and others. The content is relevant for an audience that is involved in the research and development of advanced quantum systems. It gives the industry, researchers, and students interested in learning the various quantum computing sectors with the necessary information and tools that can be used to research, design and develop advanced quantum computing systems and techniques.
Quantum mechanics has shown unprecedented success as a physical theory, but it has forced a new view on the description of physical reality. In recent years, important progress has been achieved both in the theory of open quantum systems and in the experimental realization and control of such systems. A great deal of the new results is concerned with the characterization and quantification of quantum memory effects. From this perspective, the 684. WE-Heraeus-Seminar has brought together scientists from different communities, both theoretical and experimental, sharing expertise on open quantum systems, as well as the commitment to the understanding of quantum mechanics. This book consists of many contributions addressing the diversified physics community interested in foundations of quantum mechanics and its applications and it reports about recent results in open quantum systems and their connection with the most advanced experiments testing quantum mechanics.
This book collects independent contributions on current developments in quantum information theory, a very interdisciplinary field at the intersection of physics, computer science and mathematics. Making intense use of the most advanced concepts from each discipline, the authors give in each contribution pedagogical introductions to the main concepts underlying their present research and present a personal perspective on some of the most exciting open problems. Keeping this diverse audience in mind, special efforts have been made to ensure that the basic concepts underlying quantum information are covered in an understandable way for mathematical readers, who can find there new open challenges for their research. At the same time, the volume can also be of use to physicists wishing to learn advanced mathematical tools, especially of differential and algebraic geometric nature.
This book explores interesting possibilities of extracting information about quantum states from data readily obtained from experiments, such as tomograms and expectation values of appropriate observables. The procedures suggested for identifying nonclassical effects such as wave packet revivals, squeezing and entanglement solely from tomograms circumvent detailed state reconstruction. Several bipartite entanglement indicators are defined based on tomograms, and their efficacy assessed in models of atom-field interactions and qubit systems. Tools of classical ergodic theory such as time series and network analysis are applied to quantum observables treated as dynamical variables. This brings out novel aspects involving different time scales. The book is aimed at researchers in the areas of quantum optics and quantum dynamics.
More than a century ago, starting with Michelson, the field of classical coherence has developed rapidly. By studying and uncovering the coherence properties of light, many useful applications were discovered. In modern times, these applications have seen large use in fields like astronomy, where the properties of light can be used to discover stars and determine their radius, for example. Another class of correlations, namely quantum correlations, which were discovered in the beginning of the twentieth century, have gained much attention from the scientific community in the last two decades. In particular, the field of quantum information developed, promising great computational power by using quantum correlations to build computers. Currently, quantum computation is a very active field bringing together physicists, mathematicians, engineers, chemists, and computer scientists to find solutions to the problems encountered in building quantum computers.I consider some classical coherence effects of the degree of cross polarization (DCP) on the Hanbury-Brown Twiss effect, with a specific focus on Gaussian Schell-model beams. I show that the DCP is necessary, in general, to determine the correlations in intensity fluctuations of a beam at two different points. As for quantum correlations, I consider entanglement in realistic systems: one in two-qubit systems, and the other in continuous variable quantum systems. In the former case, when the temperature of the system is finite, entanglement always decays in a finite time. However, in the latter case, entanglement is long-lived, although in the long run it is not of much practical use. Finally, I unravel the relationship between quantum discord and quantum entanglement, as well as quantum discord and entropy for the most general two-qubit systems, and I identify the states that define the boundaries of these relationships.
The correlations between physical systems provide significant information about their collective behaviour – information that is used as a resource in many applications, e.g. communication protocols. However, when it comes to the exploitation of such correlations in the quantum world, identification of the associated ‘resource’ is extremely challenging and a matter of debate in the quantum community. This dissertation describes three key results on the identification, detection, and quantification of quantum correlations. It starts with an extensive and accessible introduction to the mathematical and physical grounds for the various definitions of quantum correlations. It subsequently focusses on introducing a novel unified picture of quantum correlations by taking a modern resource-theoretic position. The results show that this novel concept plays a crucial role in the performance of collaborative quantum computations that is not captured by the standard textbook approaches. Further, this new perspective provides a deeper understanding of the quantum-classical boundary and paves the way towards establishing a resource theory of quantum computations.