Download Free Lectures In Game Theory For Computer Scientists Book in PDF and EPUB Free Download. You can read online Lectures In Game Theory For Computer Scientists and write the review.

Games provide mathematical models for interaction. Numerous tasks in computer science can be formulated in game-theoretic terms. This fresh and intuitive way of thinking through complex issues reveals underlying algorithmic questions and clarifies the relationships between different domains. This collection of lectures, by specialists in the field, provides an excellent introduction to various aspects of game theory relevant for applications in computer science that concern program design, synthesis, verification, testing and design of multi-agent or distributed systems. Originally devised for a Spring School organised by the GAMES Networking Programme in 2009, these lectures have since been revised and expanded, and range from tutorials concerning fundamental notions and methods to more advanced presentations of current research topics. This volume is a valuable guide to current research on game-based methods in computer science for undergraduate and graduate students. It will also interest researchers working in mathematical logic, computer science and game theory.
Noncooperative Game Theory is aimed at students interested in using game theory as a design methodology for solving problems in engineering and computer science. João Hespanha shows that such design challenges can be analyzed through game theoretical perspectives that help to pinpoint each problem's essence: Who are the players? What are their goals? Will the solution to "the game" solve the original design problem? Using the fundamentals of game theory, Hespanha explores these issues and more. The use of game theory in technology design is a recent development arising from the intrinsic limitations of classical optimization-based designs. In optimization, one attempts to find values for parameters that minimize suitably defined criteria—such as monetary cost, energy consumption, or heat generated. However, in most engineering applications, there is always some uncertainty as to how the selected parameters will affect the final objective. Through a sequential and easy-to-understand discussion, Hespanha examines how to make sure that the selection leads to acceptable performance, even in the presence of uncertainty—the unforgiving variable that can wreck engineering designs. Hespanha looks at such standard topics as zero-sum, non-zero-sum, and dynamics games and includes a MATLAB guide to coding. Noncooperative Game Theory offers students a fresh way of approaching engineering and computer science applications. An introduction to game theory applications for students of engineering and computer science Materials presented sequentially and in an easy-to-understand fashion Topics explore zero-sum, non-zero-sum, and dynamics games MATLAB commands are included
Games provide mathematical models for interaction. Numerous tasks in computer science can be formulated in game-theoretic terms. This fresh and intuitive way of thinking through complex issues reveals underlying algorithmic questions and clarifies the relationships between different domains. This collection of lectures, by specialists in the field, provides an excellent introduction to various aspects of game theory relevant for applications in computer science that concern program design, synthesis, verification, testing and design of multi-agent or distributed systems. Originally devised for a Spring School organised by the GAMES Networking Programme in 2009, these lectures have since been revised and expanded, and range from tutorials concerning fundamental notions and methods to more advanced presentations of current research topics. This volume is a valuable guide to current research on game-based methods in computer science for undergraduate and graduate students. It will also interest researchers working in mathematical logic, computer science and game theory.
Computer science and economics have engaged in a lively interaction over the past fifteen years, resulting in the new field of algorithmic game theory. Many problems that are central to modern computer science, ranging from resource allocation in large networks to online advertising, involve interactions between multiple self-interested parties. Economics and game theory offer a host of useful models and definitions to reason about such problems. The flow of ideas also travels in the other direction, and concepts from computer science are increasingly important in economics. This book grew out of the author's Stanford University course on algorithmic game theory, and aims to give students and other newcomers a quick and accessible introduction to many of the most important concepts in the field. The book also includes case studies on online advertising, wireless spectrum auctions, kidney exchange, and network management.
This monograph comprises a series of ten lectures divided into two parts. Part 1 focuses on the communication and computational complexity of computing an (approximate) Nash equilibrium. Part 2 focuses on applications of computational complexity theory to game theory and economics.
Game theory is the mathematical study of interaction among independent, self-interested agents. The audience for game theory has grown dramatically in recent years, and now spans disciplines as diverse as political science, biology, psychology, economics, linguistics, sociology, and computer science, among others. What has been missing is a relatively short introduction to the field covering the common basis that anyone with a professional interest in game theory is likely to require. Such a text would minimize notation, ruthlessly focus on essentials, and yet not sacrifice rigor. This Synthesis Lecture aims to fill this gap by providing a concise and accessible introduction to the field. It covers the main classes of games, their representations, and the main concepts used to analyze them.
Intelligent systems often depend on data provided by information agents, for example, sensor data or crowdsourced human computation. Providing accurate and relevant data requires costly effort that agents may not always be willing to provide. Thus, it becomes important not only to verify the correctness of data, but also to provide incentives so that agents that provide high-quality data are rewarded while those that do not are discouraged by low rewards. We cover different settings and the assumptions they admit, including sensing, human computation, peer grading, reviews, and predictions. We survey different incentive mechanisms, including proper scoring rules, prediction markets and peer prediction, Bayesian Truth Serum, Peer Truth Serum, Correlated Agreement, and the settings where each of them would be suitable. As an alternative, we also consider reputation mechanisms. We complement the game-theoretic analysis with practical examples of applications in prediction platforms, community sensing, and peer grading.
Algorithms have made our lives more efficient and entertaining--but not without a significant cost. Can we design a better future, one in which societial gains brought about by technology are balanced with the rights of citizens? The Ethical Algorithm offers a set of principled solutions based on the emerging and exciting science of socially aware algorithm design.
Algorithmic puzzles are puzzles involving well-defined procedures for solving problems. This book will provide an enjoyable and accessible introduction to algorithmic puzzles that will develop the reader's algorithmic thinking. The first part of this book is a tutorial on algorithm design strategies and analysis techniques. Algorithm design strategies — exhaustive search, backtracking, divide-and-conquer and a few others — are general approaches to designing step-by-step instructions for solving problems. Analysis techniques are methods for investigating such procedures to answer questions about the ultimate result of the procedure or how many steps are executed before the procedure stops. The discussion is an elementary level, with puzzle examples, and requires neither programming nor mathematics beyond a secondary school level. Thus, the tutorial provides a gentle and entertaining introduction to main ideas in high-level algorithmic problem solving. The second and main part of the book contains 150 puzzles, from centuries-old classics to newcomers often asked during job interviews at computing, engineering, and financial companies. The puzzles are divided into three groups by their difficulty levels. The first fifty puzzles in the Easier Puzzles section require only middle school mathematics. The sixty puzzle of average difficulty and forty harder puzzles require just high school mathematics plus a few topics such as binary numbers and simple recurrences, which are reviewed in the tutorial. All the puzzles are provided with hints, detailed solutions, and brief comments. The comments deal with the puzzle origins and design or analysis techniques used in the solution. The book should be of interest to puzzle lovers, students and teachers of algorithm courses, and persons expecting to be given puzzles during job interviews.
Engineering systems are highly distributed collective systems that have humans in the loop. Engineering systems emphasize the potential of control and games beyond traditional applications. Game theory can be used to design incentives to obtain socially desirable behaviors on the part of the players, for example, a change in the consumption patterns on the part of the ?prosumers? (producers-consumers) or better redistribution of traffic. This unique book addresses the foundations of game theory, with an emphasis on the physical intuition behind the concepts, an analysis of design techniques, and a discussion of new trends in the study of cooperation and competition in large complex distributed systems.?