Download Free Learning In Real Time Book in PDF and EPUB Free Download. You can read online Learning In Real Time and write the review.

Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.
As more classes move to online instruction, there is a need for research that shows the effectiveness of synchronous learning. Educators must guide students on how to use these new learning tools and become aware of the research trends and opportunities within these developing online and hybrid courses. Educational Technology and Resources for Synchronous Learning in Higher Education provides evidence-based practice on incorporating synchronous teaching tools and practice within online courses to enhance content mastery and community development. Additionally, the book presents a strong theoretical overview of the topic and allows readers to develop a more nuanced understanding of the benefits and constraints of synchronous learning. Covering topics such as game learning, online communication, and professional development, it is designed for online instructors, instructional designers, administrators, students, and researchers and educators in higher education, as well as corporate, military, and government sectors.
Real-time Iterative Learning Control demonstrates how the latest advances in iterative learning control (ILC) can be applied to a number of plants widely encountered in practice. The book gives a systematic introduction to real-time ILC design and source of illustrative case studies for ILC problem solving; the fundamental concepts, schematics, configurations and generic guidelines for ILC design and implementation are enhanced by a well-selected group of representative, simple and easy-to-learn example applications. Key issues in ILC design and implementation in linear and nonlinear plants pervading mechatronics and batch processes are addressed, in particular: ILC design in the continuous- and discrete-time domains; design in the frequency and time domains; design with problem-specific performance objectives including robustness and optimality; design in a modular approach by integration with other control techniques; and design by means of classical tools based on Bode plots and state space.
Learning in Real Time is a concise and practical resource for education professionals teaching live and online or those wanting to humanize and improve interaction in their online courses by adding a synchronous learning component. The book offers keen insight into the world of synchronous learning tools, guides instructors in evaluating how and when to use them, and illustrates how educators can develop their own strategies and styles in implementing such tools to improve online learning.
Summary Real-World Machine Learning is a practical guide designed to teach working developers the art of ML project execution. Without overdosing you on academic theory and complex mathematics, it introduces the day-to-day practice of machine learning, preparing you to successfully build and deploy powerful ML systems. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning systems help you find valuable insights and patterns in data, which you'd never recognize with traditional methods. In the real world, ML techniques give you a way to identify trends, forecast behavior, and make fact-based recommendations. It's a hot and growing field, and up-to-speed ML developers are in demand. About the Book Real-World Machine Learning will teach you the concepts and techniques you need to be a successful machine learning practitioner without overdosing you on abstract theory and complex mathematics. By working through immediately relevant examples in Python, you'll build skills in data acquisition and modeling, classification, and regression. You'll also explore the most important tasks like model validation, optimization, scalability, and real-time streaming. When you're done, you'll be ready to successfully build, deploy, and maintain your own powerful ML systems. What's Inside Predicting future behavior Performance evaluation and optimization Analyzing sentiment and making recommendations About the Reader No prior machine learning experience assumed. Readers should know Python. About the Authors Henrik Brink, Joseph Richards and Mark Fetherolf are experienced data scientists engaged in the daily practice of machine learning. Table of Contents PART 1: THE MACHINE-LEARNING WORKFLOW What is machine learning? Real-world data Modeling and prediction Model evaluation and optimization Basic feature engineering PART 2: PRACTICAL APPLICATION Example: NYC taxi data Advanced feature engineering Advanced NLP example: movie review sentiment Scaling machine-learning workflows Example: digital display advertising
This book provides readers with a comprehensive and recent exposition in deep learning and its multidisciplinary applications, with a concentration on advances of deep learning architectures. The book discusses various artificial intelligence (AI) techniques based on deep learning architecture with applications in natural language processing, semantic knowledge, forecasting and many more. The authors shed light on various applications that can benefit from the use of deep learning in pattern recognition, person re-identification in surveillance videos, action recognition in videos, image and video captioning. The book also highlights how deep learning concepts can be interwoven with more modern concepts to yield applications in multidisciplinary fields. Presents a comprehensive look at deep learning and its multidisciplinary applications, concentrating on advances of deep learning architectures; Includes a survey of deep learning problems and solutions, identifying the main open issues, innovations and latest technologies; Shows industrial deep learning in practice with examples/cases, efforts, challenges, and strategic approaches.
"This book looks at solutions that provide the best fits of distance learning technologies for the teacher and learner presented by sharing teacher experiences in information technology education"--Provided by publisher.
A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.
Autonomous Learning Systems is the result of over a decade of focused research and studies in this emerging area which spans a number of well-known and well-established disciplines that include machine learning, system identification, data mining, fuzzy logic, neural networks, neuro-fuzzy systems, control theory and pattern recognition. The evolution of these systems has been both industry-driven with an increasing demand from sectors such as defence and security, aerospace and advanced process industries, bio-medicine and intelligent transportation, as well as research-driven – there is a strong trend of innovation of all of the above well-established research disciplines that is linked to their on-line and real-time application; their adaptability and flexibility. Providing an introduction to the key technologies, detailed technical explanations of the methodology, and an illustration of the practical relevance of the approach with a wide range of applications, this book addresses the challenges of autonomous learning systems with a systematic approach that lays the foundations for a fast growing area of research that will underpin a range of technological applications vital to both industry and society. Key features: Presents the subject systematically from explaining the fundamentals to illustrating the proposed approach with numerous applications. Covers a wide range of applications in fields including unmanned vehicles/robotics, oil refineries, chemical industry, evolving user behaviour and activity recognition. Reviews traditional fields including clustering, classification, control, fault detection and anomaly detection, filtering and estimation through the prism of evolving and autonomously learning mechanisms. Accompanied by a website hosting additional material, including the software toolbox and lecture notes. Autonomous Learning Systems provides a ‘one-stop shop’ on the subject for academics, students, researchers and practicing engineers. It is also a valuable reference for Government agencies and software developers.
This book lies at the interface of machine learning – a subfield of computer science that develops algorithms for challenging tasks such as shape or image recognition, where traditional algorithms fail – and photonics – the physical science of light, which underlies many of the optical communications technologies used in our information society. It provides a thorough introduction to reservoir computing and field-programmable gate arrays (FPGAs). Recently, photonic implementations of reservoir computing (a machine learning algorithm based on artificial neural networks) have made a breakthrough in optical computing possible. In this book, the author pushes the performance of these systems significantly beyond what was achieved before. By interfacing a photonic reservoir computer with a high-speed electronic device (an FPGA), the author successfully interacts with the reservoir computer in real time, allowing him to considerably expand its capabilities and range of possible applications. Furthermore, the author draws on his expertise in machine learning and FPGA programming to make progress on a very different problem, namely the real-time image analysis of optical coherence tomography for atherosclerotic arteries.