Download Free Learn By Examples A Quick Guide To Data Science With Python Book in PDF and EPUB Free Download. You can read online Learn By Examples A Quick Guide To Data Science With Python and write the review.

This book is a comprehensive guide for beginners to learn Python Programming, especially its application for Data Science. While the lessons in this book are targeted at the absolute beginner to programming, people at various levels of proficiency in Python, or any other programming languages can also learn some basics and concepts of data science. A few Python libraries are introduced, including NumPy, Pandas, Matplotlib, and Seaborn for data analysis and visualisation. To make the lessons more intuitive and relatable, practical examples and applications of each lesson are given. The reader is equally encouraged to practise the techniques via exercises, within and at the end of the relevant chapters. To help the reader get a full learning experience, there are references to relevant reading and practice materials, and the reader is encouraged to click these links and explore the possibilities they offer. It is expected that with consistency in learning and practicing the reader can master Python and the basics of its application in data science. The only limitation to the reader's progress, however, is themselves!
The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning
For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Unleash the power of Python for your data analysis projects with For Dummies! Python is the preferred programming language for data scientists and combines the best features of Matlab, Mathematica, and R into libraries specific to data analysis and visualization. Python for Data Science For Dummies shows you how to take advantage of Python programming to acquire, organize, process, and analyze large amounts of information and use basic statistics concepts to identify trends and patterns. You’ll get familiar with the Python development environment, manipulate data, design compelling visualizations, and solve scientific computing challenges as you work your way through this user-friendly guide. Covers the fundamentals of Python data analysis programming and statistics to help you build a solid foundation in data science concepts like probability, random distributions, hypothesis testing, and regression models Explains objects, functions, modules, and libraries and their role in data analysis Walks you through some of the most widely-used libraries, including NumPy, SciPy, BeautifulSoup, Pandas, and MatPlobLib Whether you’re new to data analysis or just new to Python, Python for Data Science For Dummies is your practical guide to getting a grip on data overload and doing interesting things with the oodles of information you uncover.
This book aim to equip the reader with Python Programming and Data Science basics. There will be many examples and explanations that are straight to the point. You will be walked through data mining process from data preparation to data analysis (descriptive statistics) and data visualization to prediction modeling (machine learning) and deployment using Python. Content Covered: IntroductionGetting Started (Installing WinPython, IDE, ...)Language Essentials (variables, list, data types manipulations, ...)Language Essentials II (conditional statements, loops, ...)Object Essentials (Modules, Class and Objects, ...)Data Mining with Python (Pandas, ScikitLearn, ...) We will be using opensource tools and IDE, hence, you don't have to worry about buying any softwares. The book is designed for non-programmers only. It will gives you a head start into python programming, with a touch on data mining. This book has been taught at Udemy and EMHAcademy.com. Use the following Coupon to get the Udemy Course at $11.99: https://www.udemy.com/fundamentals-of-python-for-data-mining/?couponCode=EBOOKSPECIAL ISBN: 978-163535299-3
This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.
Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
*Start your Data Science career using Python today!* Are you ready to start your new exciting career? Ready to crush your machine learning career goals? Are you overwhelmed with complexity of the books on this subject?Then let this breezy and fun little book on Python and machine learning models make you a data scientist in 7 days! First part of this book introduces Python basics including: 1) Data Structures like Pandas 2) Foundational libraries like Numpy, Seaborn and Scikit-Learn Second part of this book shows you how to build predictive machine learning models step by step using techniques such as: 1) Regression analysis 2) Decision tree analysis 3) Training and testing data models 4) And much more! After reading this book you will be able to: 1) Code in Python with confidence 2) Build new machine learning models from scratch 3) Know how to clean and prepare your data for analytics 4) Speak confidently about statistical analysis techniques Data Science was ranked the fast-growing field by LinkedIn and Data Scientist is one of the most highly sought after and lucrative careers in the world! If you are on the fence about making the leap to a new and lucrative career, this is the book for you! What sets this book apart from other books on the topic of Python and Machine learning: 1) Step by step code examples and explanation 2) Complex concepts explained visually 3) Real world applicability of the machine learning models introduced 4) Bonus free code samples that you can try yourself without any prior experience in Python! What do I need to get started? You will have a step by step action plan in place once you finish this book and finally feel that you, can master data science and machine learning and start lucrative and rewarding career! Ready to dive in to the exciting world of Python and Machine Learning? Then scroll up to the top and hit that BUY BUTTON!
With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project. Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics. This pocket reference includes sections that cover: Classification, using the Titanic dataset Cleaning data and dealing with missing data Exploratory data analysis Common preprocessing steps using sample data Selecting features useful to the model Model selection Metrics and classification evaluation Regression examples using k-nearest neighbor, decision trees, boosting, and more Metrics for regression evaluation Clustering Dimensionality reduction Scikit-learn pipelines
A hands-on, real-world introduction to data analysis with the Python programming language, loaded with wide-ranging examples. Python is an ideal choice for accessing, manipulating, and gaining insights from data of all kinds. Python for Data Science introduces you to the Pythonic world of data analysis with a learn-by-doing approach rooted in practical examples and hands-on activities. You’ll learn how to write Python code to obtain, transform, and analyze data, practicing state-of-the-art data processing techniques for use cases in business management, marketing, and decision support. You will discover Python’s rich set of built-in data structures for basic operations, as well as its robust ecosystem of open-source libraries for data science, including NumPy, pandas, scikit-learn, matplotlib, and more. Examples show how to load data in various formats, how to streamline, group, and aggregate data sets, and how to create charts, maps, and other visualizations. Later chapters go in-depth with demonstrations of real-world data applications, including using location data to power a taxi service, market basket analysis to identify items commonly purchased together, and machine learning to predict stock prices.