Download Free Leading Weight Vectors In Generalized Verma Modules Book in PDF and EPUB Free Download. You can read online Leading Weight Vectors In Generalized Verma Modules and write the review.

Parabolic geometries encompass a very diverse class of geometric structures, including such important examples as conformal, projective, and almost quaternionic structures, hypersurface type CR-structures and various types of generic distributions. The characteristic feature of parabolic geometries is an equivalent description by a Cartan geometry modeled on a generalized flag manifold (the quotient of a semisimple Lie group by a parabolic subgroup). Background on differential geometry, with a view towards Cartan connections, and on semisimple Lie algebras and their representations, which play a crucial role in the theory, is collected in two introductory chapters. The main part discusses the equivalence between Cartan connections and underlying structures, including a complete proof of Kostant's version of the Bott–Borel–Weil theorem, which is used as an important tool. For many examples, the complete description of the geometry and its basic invariants is worked out in detail. The constructions of correspondence spaces and twistor spaces and analogs of the Fefferman construction are presented both in general and in several examples. The last chapter studies Weyl structures, which provide classes of distinguished connections as well as an equivalent description of the Cartan connection in terms of data associated to the underlying geometry. Several applications are discussed throughout the text.
The study of W algebras began in 1985 in the context of two-dimensional conf- mal field theories, the aim being to explore higher-spin extensions of the Virasoro algebra. Given the simultaneous growth in the understanding of two-dimensional metric gravity inspired by analyses of string models, it was inevitable that these algebras would be applied to give analogues of putative higher-spin gravity t- ories. This book is an exposition of the past few years of our work on such an application for the algebra: in particular, the BRST quantization of the n- critical 4D string. We calculate the physical spectrum as a problem in BRST cohomology. The corresponding operator cohomology forms a BV algebra, for which we provide a geometrical model. The algebra has one further generator, of spin three, in addition to the (spin two) energy-momentum tensor which generates the Virasoro algebra. C- trary to the Virasoro algebra, it is an algebra defined by nonlinear relations. In deriving our understanding of the resulting gravity theories we have had to - velop a number of results on the representation theory of W algebras, to replace the standard techniques that were so successful in treating linear algebras.
With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory supplemented by many concrete examples for a great variety of noncompact semisimple Lie algebras and groups. Contents: Introduction Lie Algebras and Groups Real Semisimple Lie Algebras Invariant Differential Operators Case of the Anti-de Sitter Group Conformal Case in 4D Kazhdan–Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant Equations Invariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie Algebras Multilinear Invariant Differential Operators from New Generalized Verma Modules Bibliography Author Index Subject Index
This work contains a complete description of the set of all unitarizable highest weight modules of classical Lie superalgebras. Unitarity is defined in the superalgebraic sense, and all the algebras are over the complex numbers. Part of the classification determines which real forms, defined by anti-linear anti-involutions, may occur. Although there have been many investigations for some special superalgebras, this appears to be the first systematic study of the problem.
Dedicated to Jacques Carmona, an expert in noncommutative harmonic analysis, the volume presents excellent invited/refereed articles by top notch mathematicians. Topics cover general Lie theory, reductive Lie groups, harmonic analysis and the Langlands program, automorphic forms, and Kontsevich quantization. Good text for researchers and grad students in representation theory.
Filling an important gap in the literature, this comprehensive text develops conformal field theory from first principles. The treatment is self-contained, pedagogical, and exhaustive, and includes a great deal of background material on quantum field theory, statistical mechanics, Lie algebras and affine Lie algebras. The many exercises, with a wide spectrum of difficulty and subjects, complement and in many cases extend the text. The text is thus not only an excellent tool for classroom teaching but also for individual study. Intended primarily for graduate students and researchers in theoretical high-energy physics, mathematical physics, condensed matter theory, statistical physics, the book will also be of interest in other areas of theoretical physics and mathematics. It will prepare the reader for original research in this very active field of theoretical and mathematical physics.
The authors study highest weight representations of shifted Yangians over an algebraically closed field of characteristic $0$. In particular, they classify the finite dimensional irreducible representations and explain how to compute their Gelfand-Tsetlin characters in terms of known characters of standard modules and certain Kazhdan-Lusztig polynomials. The authors' approach exploits the relationship between shifted Yangians and the finite W-algebras associated to nilpotent orbits in general linear Lie algebras.