Download Free Layeredness In Materials Book in PDF and EPUB Free Download. You can read online Layeredness In Materials and write the review.

This book provides information on the characteristics, strategies and applications of layered materials. It sheds light on layerdness-dependent properties of Van der Waals solids for potential applications. The properties of various layered materials prepared using different experimental strategies are described. Further, the first-principles calculations are given to devise a strategy to investigate layeredness in materials. The structural, thermal, mechanical, lattice vibronic, electronic, optical and carrier transport characteristics of the layered materials are elaborated in detail. This book provides an updated source of information on layered materials for students, researchers, and professionals.
Materials with layered structures remain an extensively investigated subject in current physics and chemistry. Most of the promising technological applications however deal with intercalation compounds of layered materials. Graphite intercalation compounds have now been known for a long time. Intercalation in transition metal dichalcogenides, on the other hand, has been investigated only recently. The amount of information on intercalated layered materials has increased far beyond the original concept for this volume in the series Physics and Chemistry of Materials with Layered Structures. The large size of this volume also indicates how important this field of research will be, not only in basic science, but also in industrial and energy applications. In this volume, two classes of materials are included, generally investigated by different scientists. Graphite intercalates and intercalates of other inorganic com pounds actually constitute separate classes of materials. However, the similarity between the intercalation techniques and some intercalation processes does not justify this separation, and accounts for the inclusion of both classes in this volume. The first part of the volume deals with intercalation processes and intercalates of transition metal dichalcogenides. Several chapters include connected topics necessary to give a good introduction or comprehensive review of these types of materials. Organic as well as inorganic intercalation compounds are treated. The second part includes contributions concerning graphite intercalates. It should be noted that graphite intercalation compounds have already been mentioned in Volumes I and V.
Focusing on layered compounds at the core of materials intercalation chemistry, this reference comprehensively explores clays and other classes of materials exhibiting the ability to pillar, or establish permanent intracrystalline porosity within layers. It offers an authoritative presentation of their fundamental properties as well as summaries of
This new volume in the series Physics and Chemistry of Materials with Layered Structures satisfies the need for a comprehensive review of the progress made in the decade 1972-1982 in the field of the electronic properties of layer compounds. Some recent theoretical and experimental developments are highlighted by authori tative physicists active in current research. The previous books of this series covering similar topics are volumes 3 and 4. The present review is mainly intended to fulfill the gap up to 1982 and part of 1983. I am indebted to all the authors for their friendly co-operation and continuous effort in preparing the contributions in their own fields of competence. I am sure that both the expertise scientists and the beginners in the field of the electronic properties of layered materials will find this book a valuable tool for their research work. Warm thanks are due to Prof. E. Mooser, General Editor of the series, for his constant and authoritative advice. * * * This book has been conceived as a tribute to Prof. Franco Bassani to whom the Italian tradition in the field of layer compounds, as well as in other fields of solid state physics, owes much. The authors of this review have all benefited at some time of their professional life from close cooperation with him. Istituto di Struttura della Materia, VINCENZO GRASSO Universitd di Messina IX V Grasso (ed.). Electronic Structure and Electronic Transitions in Layered Materials. ix.
The goal of the series Physics and Chemistry of Materials with Layered Structures is to give a critical survey of our present knowledge on a large family of materials which can be described as solids containing molecules which in two dimensions extend to infinity and which are loosely stacked on top of each other to form three dimensional crystals. Of course, the physics and chemistry of these crystals are specific chapters in ordinary solid state science, and many a scientist hunting for new phenomena has in the past been disappointed to find that materials with layered structures are not entirely exotic. Their electron and phonon states are not two dimensional, and the high hopes held by some for spectacular dimensionality effects in superconductivity were shattered. Nevertheless, the structural features and their physical and chemical consequences singularize layered structures sufficiently to make them a fascinating subject of research. This is all the more true since they are met in insulators and semiconductors as well as in normal and superconducting metals. Although for the time being the series is intentionally limited to cover inorganic materials only, the many known organic layered structures may well be the subject of future volumes. Among the noteworthy peculiarities of layered structures, we mention specific growth mechanisms and crystal habits. Polytypism is very common and it is fasci nating indeed to find up to 240 different polytypes in the same chemical substance.
This book examines in detail the application and theory of slicene-based layered materials, offering a new perspective on up-to-date mainstream theoretical and experimental research. It includes a wide range of layered systems, and takes into account the critical factors involved, such as the group-IV monoelements, stacking configurations, layer numbers, Moire superlattices. multiorbital chemical bondings and spin-orbit coupling are discussed in detail, and the theoretical framework with first-principles calculations are developed to thoroughly describe the physical, chemical, and material phenomena and concise images explain the fundamental properties. The book is an invaluable guide for researchers studying silicene-based materials. Key Features Provides an up-to-date and comprehensive discussion of the physical properties of silicene and its bilayers Covers the basic theory, experimental methods and results of research conducted on silicene Includes comparisons with other 2D materials that are missing from existing books Includes detailed comparisons between numerical simulations and experimental models/results, and the conclusions that can be drawn from these Includes practice problems and a concluding chapter covering methods that readers can use to develop theoretical frameworks
This volume is prepared from lecture notes for the course "Intercalation in Layered Materials" which was held at the Ettore Majorana Centre for Scientific Culture at Erice, Sicily in July, 1986, as part of the International School of Materials Science and Tech nology. The course itself consisted of formal tutorial lectures, workshops, and informal discussions. Lecture notes were prepared for the formal lectures, and short summaries of many of the workshop presentations were prepared. This volume is based on these lecture notes and research summaries. The material is addressed to advanced graduate students and postdoctoral researchers and assumes a background in basic solid state physics. The goals of this volume on Intercalation in Layered Materials include an introduc tion to the field for potential new participants, an in-depth and broad exposure for stu dents and young investigators already working in the field, a basis for cross-fertilization between workers on various layered host materials and with various intercalants, and an elaboration of the complementarity of intercalated layered materials with deliberately structured superlattices.
In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: • Magnetic chains or layers (thin-film technology). • Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). • I-d or 2-d conductors and superconductors. • Intercalated systems. • 2-d electron gases (electrons on helium, semiconductor interfaces). • Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). • Superfluid films of ~He or 'He. • Polymer physics. • Organic and inorganic chain conductors, superionic conductors. • I-d or 2-d molecular crystals and liquid crystals. • I-d or 2-d ferro- and antiferro electrics.
Layered materials have attracted much attention in this decade because of their high active surface area and the ability to tune the properties through the formation of layered structures for various applications. This compliments the layered materials with high mechanical flexibility, chemical stability, and superior electrical and thermal conductivities, which make them a great alternative for electrochemical applications such as electrochemical energy conversion, storage devices, and environmental remediation. This book offers the state of the art of research on the synthesis, properties, characterization, and electrochemical applications of layered materials and highlights the present challenges related to environmental issues. It provides fundamental, experimental, and theoretical knowledge about layered materials, including graphene, graphitic carbon nitride, boron nitride, and MoS2-, Li-, and Mn-rich oxide materials and MXenes, and elaborates their synthesis, physicochemical properties, and structure-property-electrochemical performance. The book also covers the recent progress in developing layered material-based electrochemical energy conversion systems and storage devices and identifies immediate research needs and directions in developing layered material-based systems for future applications.
The considerable interest in graphene and 2D materials is sparking intense research on layered materials due to their unexpected physical, electronic, chemical, and optical properties. This book will provide a comprehensive overview of the recent and state-of-the-art research progress on layered materials for energy storage and other applications. With a brief introduction to layered materials, the chapters of this book gather various fascinating topics such as electrocatalysis for fuel cells, lithium-ion batteries, sodium-ion batteries, photovoltaic devices, thermoelectric devices, supercapacitors and water splitting. Unique aspects of layered materials in these fields, including novel synthesis and functionalization methods, particular physicochemical properties and consequently enhanced performance are addressed. Challenges and perspectives for layered materials in these fields will also be presented. With contributions from key researchers, Layered Materials for Energy Storage and Conversion will be of interest to students, researchers and engineers worldwide who want a basic overview of the latest progress and future directions.