Download Free Lasers And Electro Optics For Automotive Manufacturing Book in PDF and EPUB Free Download. You can read online Lasers And Electro Optics For Automotive Manufacturing and write the review.

It is expected that advances in optics will revolutionise the 21st century as they began doing in the last quarter of the 20th. Such fields as communications, materials science, computing and medicine are leaping forward based on developments in optics. This series presents research on optics and lasers from researchers spanning the globe.
Laser Additive Manufacturing: Materials, Design, Technologies, and Applications provides the latest information on this highly efficient method of layer-based manufacturing using metals, plastics, or composite materials. The technology is particularly suitable for the production of complex components with high precision for a range of industries, including aerospace, automotive, and medical engineering. This book provides a comprehensive review of the technology and its range of applications. Part One looks at materials suitable for laser AM processes, with Part Two discussing design strategies for AM. Parts Three and Four review the most widely-used AM technique, powder bed fusion (PBF) and discuss other AM techniques, such as directed energy deposition, sheet lamination, jetting techniques, extrusion techniques, and vat photopolymerization. The final section explores the range of applications of laser AM. - Provides a comprehensive one-volume overview of advances in laser additive manufacturing - Presents detailed coverage of the latest techniques used for laser additive manufacturing - Reviews both established and emerging areas of application
Optical science and engineering affect almost every aspect of our lives. Millions of miles of optical fiber carry voice and data signals around the world. Lasers are used in surgery of the retina, kidneys, and heart. New high-efficiency light sources promise dramatic reductions in electricity consumption. Night-vision equipment and satellite surveillance are changing how wars are fought. Industry uses optical methods in everything from the production of computer chips to the construction of tunnels. Harnessing Light surveys this multitude of applications, as well as the status of the optics industry and of research and education in optics, and identifies actions that could enhance the field's contributions to society and facilitate its continued technical development.
This book provides scientific and technological insights on novel techniques of design and manufacturing using laser technologies. It showcases applications of laser micromachining in the biomedical industry, laser-based manufacturing processes in aerospace engineering, and high-precision laser-cutting in the home appliance sector. Features: Each chapter discusses a specific engineering problem and showcases its numerical, and experimental solution Provides scientific and technological insights on novel routes of design and manufacturing using laser technologies Synergizes exploration related to the various properties and functionalities through extensive theoretical and numerical modeling Highlights current issues, developments, and constraints in additive manufacturing Discusses applications of laser cutting machines in the manufacturing industry and laser micromachining for the biomedical industry The text discusses optical, and laser-based green manufacturing technologies and their application in diverse engineering fields including mechanical, electrical, biomedical, and computer. It further covers sustainability issues in laser-based manufacturing technologies and the development of laser-based ultra-precision manufacturing techniques. The text also discusses the use of artificial intelligence and machine learning in laser-based manufacturing techniques. It will serve as an ideal reference text for senior undergraduate, graduate students, and researchers in fields including mechanical engineering, aerospace engineering, manufacturing engineering, and production engineering.
Increasing concern with fuel consumption leads to widespread interest in lightweight structures for transportation vehicles. Several competing technologies are available for the structural connections of these structures, namely welding, mechanical fastening / riveting, and adhesive technologies. Arranged in a single volume, this work is to presents state-of-the-art discussions of those aspects and processes presenting greater novelty whilst simultaneously keeping wide applicability potential and interest. The topics chosen have the common feature of being of currently applied in lightweight structures, and one of the characteristics of this work is bringing together relevant state-of-the-art information usually presented in separate publications specializing in a single technology. The book provides discussions and examples of concrete applications, so that it appeals to researchers and designers and engineers involved in the design and fabrication of lightweight structures.
Laser Cutting Guide for Manufacturing presents practical information and troubleshooting and design tools from a quality manufacturing perspective. Equally applicable to small shops as it is to large fabricator companies, this guide is a roadmap for developing, implementing, operating, and maintaining a laser-cutting manufacturing enterprise. The book focuses on metal cutting of sheets, plates, tubes, and 3-D shaped stampings. It presents today's reality of the engineering and business challenges, and opportunities presented by the rapid penetration cutting in all facets of industry.
In today's world, the range of technologies with the potential to threaten the security of U.S. military forces is extremely broad. These include developments in explosive materials, sensors, control systems, robotics, satellite systems, and computing power, to name just a few. Such technologies have not only enhanced the capabilities of U.S. military forces, but also offer enhanced offensive capabilities to potential adversaries - either directly through the development of more sophisticated weapons, or more indirectly through opportunities for interrupting the function of defensive U.S. military systems. Passive and active electro-optical (EO) sensing technologies are prime examples. Laser Radar considers the potential of active EO technologies to create surprise; i.e., systems that use a source of visible or infrared light to interrogate a target in combination with sensitive detectors and processors to analyze the returned light. The addition of an interrogating light source to the system adds rich new phenomenologies that enable new capabilities to be explored. This report evaluates the fundamental, physical limits to active EO sensor technologies with potential military utility; identifies key technologies that may help overcome the impediments within a 5-10 year timeframe; considers the pros and cons of implementing each existing or emerging technology; and evaluates the potential uses of active EO sensing technologies, including 3D mapping and multi-discriminate laser radar technologies.