Download Free Laser Tissue Interaction Book in PDF and EPUB Free Download. You can read online Laser Tissue Interaction and write the review.

Basic concepts such as the optical and thermal properties of tissue, the various types of tissue ablation, and optical breakdown and its related effects are treated in detail. Special attention is given to mathematical tools (Monte Carlo simulations, the Kubelka—Munk theory etc.) and approved techniques (photodynamic therapy, laser-induced interstitial thermotherapy etc.). The part on applications reviews clinically relevant methods in modern medicine using the latest references. The last chapter covers today’s standards of laser safety, with a careful selection of essential guidelines published by the Laser Institute of America. With numerous research photographs, illustrations, tables and comprehensive summaries.
The second edition maintains the standard of excellence established in the first edition, while adjusting the content to reflect changes in tissue optics and medical applications since 1995. The material concerning light propagation now contains new chapters devoted to electromagnetic theory for coherent light. The material concerning thermal laser-tissue interactions contains a new chapter on pulse ablation of tissue. The medical applications section now includes several new chapters on Optical Coherent Tomography, acoustic imaging, molecular imaging, forensic optics and nerve stimulation. A detailed overview is provided of the optical and thermal response of tissue to laser irradiation along with diagnostic and therapeutic examples including fiber optics. Sufficient theory is included in the book so that it is suitable for a one or two semester graduate or for senior elective courses. Material covered includes (1) light propagation and diagnostic application; (2) the thermal response of tissue and therapeutic application; (3) denaturation; and (4) ablation. The theory and applications provide researchers with sufficient detail that this volume will become the primary reference for laser-tissue interactions and medical applications.
The editors have gathered 15 laser experts from the United States, Europe and Asia to present the most up to date information in cutaneous laser surgery and intense pulsed light technologies. This innovative book describes new laser techniques (laserlipolysis, fractional photothermolysis, among others) and provides expert guidance on using lasers successfully in over 80 clinical indications.
This book provides information on the basic science and tissue interactions of dental lasers and documents the principal current clinical uses of lasers in every dental discipline. The applications of lasers in restorative dentistry, endodontics, dental implantology, pediatric dentistry, periodontal therapy, and soft tissue surgery are clearly described and illustrated. Information is also provided on laser-assisted multi-tissue management, covering procedures such as crown lengthening, gingival troughing, gingival recontouring, and depigmentation. The closing chapters look forward to the future of lasers in dentistry and the scope for their widespread use in everyday clinical practice.When used in addition to or instead of conventional instrumentation, lasers offer many unique patient benefits. Furthermore, research studies continue to reveal further potential clinical applications, and new laser wavelengths are being explored, developed, and delivered with highly specific power configurations to optimize laser–tissue interaction. This book will bring the reader up to date with the latest advances and will appeal to all with an interest in the application of lasers to the oral soft and/or hard tissues.
Lasers have a wide and growing range of applications in medicine. Lasers for Medical Applications summarises the wealth of recent research on the principles, technologies and application of lasers in diagnostics, therapy and surgery.Part one gives an overview of the use of lasers in medicine, key principles of lasers and radiation interactions with tissue. To understand the wide diversity and therefore the large possible choice of these devices for a specific diagnosis or treatment, the respective types of the laser (solid state, gas, dye, and semiconductor) are reviewed in part two. Part three describes diagnostic laser methods, for example optical coherence tomography, spectroscopy, optical biopsy, and time-resolved fluorescence polarization spectroscopy. Those methods help doctors to refine the scope of involvement of the particular body part or, for example, to specify the extent of a tumor. Part four concentrates on the therapeutic applications of laser radiation in particular branches of medicine, including ophthalmology, dermatology, cardiology, urology, gynecology, otorhinolaryngology (ORL), neurology, dentistry, orthopaedic surgery and cancer therapy, as well as laser coatings of implants. The final chapter includes the safety precautions with which the staff working with laser instruments must be familiar.With its distinguished editor and international team of contributors, this important book summarizes international achievements in the field of laser applications in medicine in the past 50 years. It provides a valuable contribution to laser medicine by outstanding experts in medicine and engineering. - Describes the interaction of laser light with tissue - Reviews every type of laser used in medicine: solid state, gas, dye and semiconductor - Describes the use of lasers for diagnostics
This book provides surgeons with important insights into laser technologies as well as a sound understanding of their current and potential applications within oral and maxillofacial surgery and related disciplines. The opening chapters focus on the relevant physical background, the technology of the typically used lasers, laser–tissue interactions, and the treatment systems. Detailed information is then provided on the various established applications of laser treatments, including in relation to skin and mucosa and the dental hard tissues and bone. Special applications are also described, for example with respect to periodontal surgery, peri-implantitis therapy, photodynamic treatment, holography and additive manufacturing. The book closes by examining technologies that will soon be available for application in hospitals, topics which are currently the subject of research, and laser safety. Beyond surgeons, the book will be of value for engineers and scientists working in the field of medical engineering using lasers.
This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.
The book describes the most advanced techniques for generating coherent light in the mid-infrared region of the spectrum. These techniques represent diverse areas of photonics and include heterojunction semiconductor lasers, quantum cascade lasers, tunable crystalline lasers, fiber lasers, Raman lasers, and optical parametric laser sources. Offering authoritative reviews by internationally recognized experts, the book provides a wealth of information on the essential principles and methods of the generation of coherent mid-infrared light and on some of its applications. The instructive nature of the book makes it an excellent text for physicists and practicing engineers who want to use mid-infrared laser sources in spectroscopy, medicine, remote sensing and other fields, and for researchers in various disciplines requiring a broad introduction to the subject.
This book presents the state of the art in the use of laser in restorative dentistry. After discussion of relevant background, basic physics and laser types, the full range of clinical applications is covered with the aid of more than 600 clinical photographs, charts, and tables. In addition to conventional indications, newer operative procedures that reliably yield favorable outcomes are carefully described step by step. The authors’ own research findings and clinical cases are included in the book, which also provides a complete, up-to-date review of the international literature on laser adhesive dentistry. Lasers in Restorative Dentistry will be a valuable guide for general dentists who use the laser in their daily practice and are seeking advice on how to improve the quality of their work. If you are a new, experienced, or even advanced laser user, this book will be an exceptionally useful resource. Enjoy delving into the wonderful world of laser dentistry!