Download Free Laser Powder Bed Fusion Of Additive Manufacturing Technology Book in PDF and EPUB Free Download. You can read online Laser Powder Bed Fusion Of Additive Manufacturing Technology and write the review.

Laser powder bed fusion of metals is a technology that makes use of a laser beam to selectively melt metal powder layer-by-layer in order to fabricate complex geometries in high performance materials. The technology is currently transforming aerospace and biomedical manufacturing and its adoption is widening into other industries as well, including automotive, energy, and traditional manufacturing. With an increase in design freedom brought to bear by additive manufacturing, new opportunities are emerging for designs not possible previously and in material systems that now provide sufficient performance to be qualified in end-use mission-critical applications. After decades of research and development, laser powder bed fusion is now enabling a new era of digitally driven manufacturing. Fundamentals of Laser Powder Bed Fusion of Metals will provide the fundamental principles in a broad range of topics relating to metal laser powder bed fusion. The target audience includes new users, focusing on graduate and undergraduate students; however, this book can also serve as a reference for experienced users as well, including senior researchers and engineers in industry. The current best practices are discussed in detail, as well as the limitations, challenges, and potential research and commercial opportunities moving forward. - Presents laser powder bed fusion fundamentals, as well as their inherent challenges - Provides an up-to-date summary of this advancing technology and its potential - Provides a comprehensive textbook for universities, as well as a reference for industry - Acts as quick-reference guide
Laser powder bed fusion of metals is a technology that makes use of a laser beam to selectively melt metal powder layer-by-layer in order to fabricate complex geometries in high performance materials. The technology is currently transforming aerospace and biomedical manufacturing and its adoption is widening into other industries as well, including automotive, energy, and traditional manufacturing. With an increase in design freedom brought to bear by additive manufacturing, new opportunities are emerging for designs not possible previously and in material systems that now provide sufficient performance to be qualified in end-use mission-critical applications. After decades of research and development, laser powder bed fusion is now enabling a new era of digitally driven manufacturing. Fundamentals of Laser Powder Bed Fusion of Metals will provide the fundamental principles in a broad range of topics relating to metal laser powder bed fusion. The target audience includes new users, focusing on graduate and undergraduate students; however, this book can also serve as a reference for experienced users as well, including senior researchers and engineers in industry. The current best practices are discussed in detail, as well as the limitations, challenges, and potential research and commercial opportunities moving forward. Presents laser powder bed fusion fundamentals, as well as their inherent challenges Provides an up-to-date summary of this advancing technology and its potential Provides a comprehensive textbook for universities, as well as a reference for industry Acts as quick-reference guide
This textbook covers in detail digitally-driven methods for adding materials together to form parts. A conceptual overview of additive manufacturing is given, beginning with the fundamentals so that readers can get up to speed quickly. Well-established and emerging applications such as rapid prototyping, micro-scale manufacturing, medical applications, aerospace manufacturing, rapid tooling and direct digital manufacturing are also discussed. This book provides a comprehensive overview of additive manufacturing technologies as well as relevant supporting technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. Reflects recent developments and trends and adheres to the ASTM, SI and other standards; Includes chapters on topics that span the entire AM value chain, including process selection, software, post-processing, industrial drivers for AM, and more; Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered.
Laser Additive Manufacturing: Materials, Design, Technologies, and Applications provides the latest information on this highly efficient method of layer-based manufacturing using metals, plastics, or composite materials. The technology is particularly suitable for the production of complex components with high precision for a range of industries, including aerospace, automotive, and medical engineering. This book provides a comprehensive review of the technology and its range of applications. Part One looks at materials suitable for laser AM processes, with Part Two discussing design strategies for AM. Parts Three and Four review the most widely-used AM technique, powder bed fusion (PBF) and discuss other AM techniques, such as directed energy deposition, sheet lamination, jetting techniques, extrusion techniques, and vat photopolymerization. The final section explores the range of applications of laser AM. - Provides a comprehensive one-volume overview of advances in laser additive manufacturing - Presents detailed coverage of the latest techniques used for laser additive manufacturing - Reviews both established and emerging areas of application
This book systematically introduces the powder bed laser melting technology and its application and summarizes the author's team's experience in scientific research, engineering development, and data accumulation in recent 15 years. It includes in-depth theoretical analysis and a lot of engineering experience in equipment debugging, process development, and material testing. The book takes the powder bed laser melting technology as the object and divides the content into 15 chapters. It is used as technical learning materials for researchers and engineering development personnel engaged in metal 3D printing.
Addressing the growing global concern for sustainable engineering, this title is devoted exclusively to the environmental aspects of materials.
Theoretical and practical interests in additive manufacturing (3D printing) are growing rapidly. Engineers and engineering companies now use 3D printing to make prototypes of products before going for full production. In an educational setting faculty, researchers, and students leverage 3D printing to enhance project-related products. Additive Manufacturing Handbook focuses on product design for the defense industry, which affects virtually every other industry. Thus, the handbook provides a wide range of benefits to all segments of business, industry, and government. Manufacturing has undergone a major advancement and technology shift in recent years.
Additive manufacturing (AM) of metals and composites using laser energy, direct energy deposition, electron beam methods, and wire arc melting have recently gained importance due to their advantages in fabricating the complex structure. Today, it has become possible to reliably manufacture dense parts with certain AM processes for many materials, including steels, aluminum and titanium alloys, superalloys, metal-based composites, and ceramic matrix composites. In the near future, the AM material variety will most likely grow further, with high-performance materials such as intermetallic compounds and high entropy alloys already under investigation. Additive Manufacturing Applications for Metals and Composites is a pivotal reference source that provides vital research on advancing methods and technological developments within additive manufacturing practices. Special attention is paid to the material design of additive manufacturing of parts, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the manufacturing process, and the resulted microstructures and properties, as well as the relationship between these factors. While highlighting topics such as numerical modeling, intermetallic compounds, and statistical techniques, this publication is ideally designed for students, engineers, researchers, manufacturers, technologists, academicians, practitioners, scholars, and educators.
3D PRINTING FOR ENERGY APPLICATIONS Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices. Readers will also benefit from the inclusion of: A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric additive manufacturing Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists, 3D Printing for Energy Applications will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.
This book details aluminum alloys with special focus on the aluminum silicon (Al‐Si) systems – that are the most abundant alloys second only to steel. The authors include a description of the manufacturing principles, thermodynamics, and other main characteristics of Al‐Si alloys. Principles of processing, testing, and in particular applications in the Automotive, Aeronautical and Aerospace fields are addressed.