Download Free Laser Beam Mode Selection By Computer Generated Holograms Book in PDF and EPUB Free Download. You can read online Laser Beam Mode Selection By Computer Generated Holograms and write the review.

Laser Beam Mode Selection by Computer Generated Holograms brings attention to a new class of optical elements called modans, with applications in laser and fiber optics. Separation of the transverse modes by modans is discussed in close analogy to well-known effects of color separation by diffraction gratings. The book describes the basic questions of digital holography in the recording of complex wavefronts on phase-only media, binary coding cells, multilevel computer-generated holograms, quantization and sampling, image reconstruction, and computer generation of multifocal and multibeam holograms. This collective effort summarizes 12 years of scientific activities in the development of diffractive optical elements and provides considerable material never before published. An interesting appendix dedicates itself to mathematical proof of optimal properties of orthogonal base-functions and eigenfunctions.
The applications of diffraction and holographic device technologies are the focus of this text. The 26 papers examine aspects such as theory and design, diffraction/holographic elements of materials and fabrications, and devices with diffractive methods.
This new edition details the important features of beam shaping and exposes the subtleties of the theory and techniques that are best demonstrated through proven applications. New chapters cover illumination light shaping in optical lithography; optical micro-manipulation of live mammalian cells through trapping, sorting, and transfection; and laser beam shaping through fiber optic beam delivery. The book discusses applications in lithography, laser printing, optical data storage, stable isotope separation, and spatially dispersive lasers. It also provides a history of the field and includes extensive references.
Diffractive optics involves the manipulation of light using diffractive optical elements (DOEs). DOEs are being widely applied in such areas as telecommunications, electronics, laser technologies and biomedical engineering. Computer design of diffractive optics provides an authoritative guide to the principles and applications of computer-designed diffractive optics.The theoretical aspects underpinning diffractive optics are initially explored, including the main equations in diffraction theory and diffractive optical transformations. Application of electromagnetic field theory for calculating diffractive gratings and related methods in micro-optics are discussed, as is analysis of transverse modes of laser radiation and the formation of self-replicating multimode laser beams. Key applications of DOEs reviewed include geometrical optics approximation, scalar approximation and optical manipulation of micro objects, with additional consideration of multi-order DOEs and synthesis of DOEs on polycrystalline diamond films.With its distinguished editor and respected team of expert contributors, Computer design of diffractive optics is a comprehensive reference tool for professionals and academics working in the field of optical engineering and photonics. - Explores the theoretical aspects underpinning diffractive optics - Discusses key applications of diffractive optical elements - A comprehensive reference for professionals and academics in optical engineering and photonics
In this age of the photon, information optics and photonics represent the key technologies to sustain our knowledge-based society. New concepts in classical and quantum-entangled light, coherent interaction with matter, and novel materials and processes have led to remarkable advances in today's information science and technology. The ICO is closely involved with information optics, as exemplified by the ICO topical meeting on Optoinformatics / Information Photonics (St. Petersburg, Russia, 2006), the ICO/ICTP Winter College on Quantum and Classical Aspects of Information Optics (Trieste, Italy, 2006), and the many ICO Prizes recently awarded on outstanding contributions on these topics. This book is in part based on these ICO activities.
Publishes papers reporting on research and development in optical science and engineering and the practical applications of known optical science, engineering, and technology.
Building up from the basic principles of optics, this straightforward introduction to digital holography, aimed at graduate students, engineers and researchers, describes modern techniques and applications, plus all the necessary underlying theory. Supporting Matlab code is available for download online, and homework problems are accompanied by an instructor solution manual.