Download Free Laser Based Optical Detection Of Explosives Book in PDF and EPUB Free Download. You can read online Laser Based Optical Detection Of Explosives and write the review.

Laser-Based Optical Detection of Explosives offers a comprehensive review of past, present, and emerging laser-based methods for the detection of a variety of explosives. This book: Considers laser propagation safety and explains standard test material preparation for standoff optical-based detection system evaluation Explores explosives detection using deep ultraviolet native fluorescence, Raman spectroscopy, laser-induced breakdown spectroscopy, reflectometry, and hyperspectral imaging Examines photodissociation followed by laser-induced fluorescence, photothermal methods, cavity-enhanced absorption spectrometry, and short-pulse laser-based techniques Describes the detection and recognition of explosives using terahertz-frequency spectroscopic techniques Each chapter is authored by a leading expert on the respective technology, and is structured to supply historical perspective, address current advantages and challenges, and discuss novel research and applications. Readers are left with an in-depth understanding and appreciation of each technology’s capabilities and potential for standoff hazard detection.
Laser-Based Optical Detection of Explosives offers a comprehensive review of past, present, and emerging laser-based methods for the detection of a variety of explosives. This book: Considers laser propagation safety and explains standard test material preparation for standoff optical-based detection system evaluation Explores explosives detection using deep ultraviolet native fluorescence, Raman spectroscopy, laser-induced breakdown spectroscopy, reflectometry, and hyperspectral imaging Examines photodissociation followed by laser-induced fluorescence, photothermal methods, cavity-enhanced absorption spectrometry, and short-pulse laser-based techniques Describes the detection and recognition of explosives using terahertz-frequency spectroscopic techniques Each chapter is authored by a leading expert on the respective technology, and is structured to supply historical perspective, address current advantages and challenges, and discuss novel research and applications. Readers are left with an in-depth understanding and appreciation of each technology’s capabilities and potential for standoff hazard detection.
This volume presents selected contributions from the “Advanced Research Workshop on Explosives Detection” hosted by the Department of Information Engineering of the University of Florence, Italy in 2018. The main goal of the workshop was to find out how Science for Peace and Security projects in the field of Explosives Detection contribute to the development and/or refinement of scientific and technical knowledge and competencies. The findings of the workshop, presented in the last section of the book, determine future actions and direction of the SPS Programme in the field of explosives detection and management.The NATO Science for Peace and Security (SPS) Programme, promotes dialogue and practical cooperation between NATO member states and partner nations based on scientific research, technological innovation and knowledge exchange. Several initiatives were launched in the field of explosive detection and clearance, as part of NATO’s enhanced role in the international fight against terrorism. Experts and scientists from NATO members and partner countries have been brought together in multi-year projects, within the framework of the SPS Programme, to cooperate in the scientific research in explosive detection field, developing new technologies and methods to be implemented in order to detect explosive substances in different contexts.
The use of explosives in terror attacks, including improvised ones, presents an ongoing threat which requires the development of techniques for detecting a larger variety of explosives, faster detection, and with lower rates of false alarms. Counterterrorist detection techniques of explosives [...] covers the most successful techniques for explosives detection at present. This completely revised volume describes the most updated research findings, which will be used in the next generation of explosives detection technologies. New editors Drs. Avi Cagan and Jimmie Oxley have assembled in one volume a series of detection technologies of explosives, written by a group of scientists who are experts in each of these technologies. The book helps researchers to compare the advantages and disadvantages of all available methods in detecting explosives and, in effect, allow them to choose the correct instrumental screening technology according to the nature of the sample.
Counterterrorist Detection Techniques of Explosives, Second Edition covers the most current techniques available for explosive detection. This completely revised volume describes the most updated research findings that will be used in the next generation of explosives detection technologies. New editors Drs. Avi Cagan and Jimmie Oxley have assembled in one volume a series of detection technologies written by an expert group of scientists. The book helps researchers to compare the advantages and disadvantages of all available methods in detecting explosives and, in effect, allows them to choose the correct instrumental screening technology according to the nature of the sample. - Covers bulk/remote trace/contact or contact-less detection - Describes techniques applicable to indoor (public transportation, human and freight) and outdoor (vehicle) detection - Reviews both current techniques and those in advanced stages of development - Provides detailed descriptions of every technique, including its principles of operation, as well as its applications in the detection of explosives
Existing and Potential Standoff Explosives Detection Techniques examines the scientific techniques currently used as the basis for explosives detection and determines whether other techniques might provide promising research avenues with possible pathways to new detection protocols. This report describe the characteristics of explosives, bombs, and their components that are or might be used to provide a signature for exploitation in detection technology; considers scientific techniques for exploiting these characteristics to detect explosives and explosive devices; discusses the potential for integrating such techniques into detection systems that would have sufficient sensitivity without an unacceptable false-positive rate; and proposes areas for research that might be expected to yield significant advances in practical explosives and bomb detection technology in the near, mid, and long term.
This book covers the security and safety of CBRNE assets and management, and illustrates which risks may emerge and how to counter them through an enhanced risk management approach. It also tackles the CBRNE-Cyber threats, their risk mitigation measures and the relevance of raising awareness and education enforcing a CBRNE-Cy security culture. The authors present international instruments and legislation to deal with these threats, for instance the UNSCR1540. The authors address a multitude of stakeholders, and have a multidisciplinary nature dealing with cross-cutting areas like the convergence of biological and chemical, the development of edging technologies, and in the cyber domain, the impelling risks due to the use of malwares against critical subsystems of CBRN facilities. Examples are provided in this book. Academicians, diplomats, technicians and engineers working in the chemical, biological, radiological, nuclear, explosive and cyber fields will find this book valuable as a reference. Students studying in these related fields will also find this book useful as a reference.
Laser-Induced Breakdown Spectroscopy, Second Edition, covers the basic principles and latest developments in instrumentation and applications of Laser Induced Breakdown Spectroscopy (LIBS). Written by active experts in the field, it serves as a useful resource for analytical chemists and spectroscopists, as well as graduate students and researchers engaged in the fields of combustion, environmental science, and planetary and space exploration. This fully revised second edition includes several new chapters on new LIBS techniques as well as several new applications, including flame and off-gas measurement, pharmaceutical samples, defense applications, carbon sequestration and site monitoring, handheld instruments, and more. LIBS has rapidly developed into a major analytical technology with the capability of detecting all chemical elements in a sample, of real- time response, and of close-contact or stand-off analysis of targets. It does not require any sample preparation, unlike conventional spectroscopic analytical techniques. Samples in the form of solids, liquids, gels, gases, plasmas, and biological materials (like teeth, leaves, or blood) can be studied with almost equal ease. This comprehensive reference introduces the topic to readers in a simple, direct, and accessible manner for easy comprehension and maximum utility. - Covers even more applications of LIBS beyond the first edition, including combustion, soil physics, environment, and life sciences - Includes new chapters on LIBS techniques that have emerged in the last several years, including Femtosecond LIBS and Molecular LIBS - Provides inspiration for future developments in this rapidly growing field in the concluding chapter
Delving into Infrared Spectroscopy: Principles, Advances and Applications, and with basic knowledge of IR spectroscopy, will provide the reader with a synopsis of fundamentals and groundbreaking advances in the field. Readers will see a variety of MIR applications and difficulties encountered, especially in an industrial environment. Competency in FT-IR spectroscopy in biomedical research and early-stage diagnosis of obesity is shown. Challenges associated with VIS-NIR applications are shown through application of the technique in assessing quality parameters of fruits. Moreover, IR spectroscopic studies of radiation-stimulated processes, and the influence of using IR in developing an ideal catalyst and hence an efficient catalysis process, are discussed. The impact of coupling multivariate data analysis techniques to IR is shown in almost every chapter.
The book "Technology in Forensic Science" provides an integrated approach by reviewing the usage of modern forensic tools as well as the methods for interpretation of the results. Starting with best practices on sample taking, the book then reviews analytical methods such as high-resolution microscopy and chromatography, biometric approaches, and advanced sensor technology as well as emerging technologies such as nanotechnology and taggant technology. It concludes with an outlook to emerging methods such as AI-based approaches to forensic investigations.