Download Free Laser Assisted Nuclear Decay Spectroscopy Book in PDF and EPUB Free Download. You can read online Laser Assisted Nuclear Decay Spectroscopy and write the review.

This work details an application of collinear resonance ionization spectroscopy for the separation of short-lived isomeric states and their subsequent study with decay spectroscopy. It reports the successful construction of a novel decay spectroscopy apparatus that can operate at pressures below 1 x 10^-9 mbar. The method is demonstrated by separating the nuclear ground and isomeric states of 204Fr and performing alpha-decay spectroscopy. An equivalent mass spectrometer would require 4.6 million times as much resolution to achieve the same result. This work unambiguously confirms the existence of a second isomeric state in 204Fr. The author also demonstrates the effectiveness of this method for laser spectroscopy and identification of hyperfine-structure components with energy tagging. This method was successfully used in 202Fr to identify ground and isomeric states. The measurement of 202Fr reported in this thesis demonstrates a factor of 100 improvement in sensitivity compared to state-of-the-art fluorescence techniques. The work reported in this thesis won the author the IOP Nuclear Physics Group Early Career Prize.
This thesis describes the application of the collinear resonance laser spectroscopy to sensitively measure the electromagnetic nuclear observables of the neutron-rich indium isotopes 115-131In. This entailed a systematic study of the efficiency of resonant ionization schemes to extract the hyperfine structure of the isotopes, the atomic charge exchange process and benchmarking of modern atomic calculations with a laser ablation ion source. This allowed determination of the root-mean-square nuclear charge radii, nuclear magnetic dipole moments, nuclear electric quadrupole moments and nuclear spins of the 113-131In isotopes with high accuracy. With a proton hole in the Z = 50 nuclear shell closure of tin and several nuclear isomer states, these measurements of the indium (Z = 49) isotope chain provided an efficient probe of the evolution of nuclear structure properties towards and at the doubly-magic nuclear shell closure of 132Sn (N = 82) - revealing unpredicted changes.
In view of the rapid growth in both experimental and theoretical studies of multiphoton processes and multiphoton spectroscopy of atoms, ions, and molecules in chemistry, physics, biology, materials sciences, etc., it is desirable to publish an Advanced Series that contains review papers readable not only by active researchers in these areas, but also by those who are not experts in the field but who intend to enter the field. The present series attempts to serve this purpose. Each review article is written in a self-contained manner by the experts in the area so that the readers can grasp the knowledge in the area without too much preparation. This volume will be useful not only to active researchers but also to other scientists in the area of biology, chemistry, materials science, and physics.
This handbook is a comprehensive, systematic source of modern nuclear physics. It aims to summarize experimental and theoretical discoveries and an understanding of unstable nuclei and their exotic structures, which were opened up by the development of radioactive ion (RI) beam in the late 1980s. The handbook comprises three major parts. In the first part, the experiments and measured facts are well organized and reviewed. The second part summarizes recognized theories to explain the experimental facts introduced in the first part. Reflecting recent synergistic progress involving both experiment and theory, the chapters both parts are mutually related. The last part focuses on cosmo-nuclear physics—one of the mainstream subjects in modern nuclear physics. Those comprehensive topics are presented concisely. Supported by introductory reviews, all chapters are designed to present their topics in a manner accessible to readers at the graduate level. The book therefore serves as a valuable source for beginners as well, helping them to learn modern nuclear physics.
Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.
Rare Isotope Beams (RIBs) are ion beams of exotic radioactive nuclei. The study of these nuclei is key to understanding the limits of nuclear existence, nucleo-synthesis in such violent stellar sites as supernovae and merging neutron stars, and the fundamental symmetries of nature. These nuclei also provide a unique probe to study condensed matter and many of them are potentially new radioisotopes for more effective medical diagnostics and therapy. Rare Isotope Beams: Concepts and Techniques gives an up-to-date overview of all these aspects of RIB science in a single volume containing the scientific motivation, production techniques, experimental techniques for studying exotic nuclei, methods used in condensed matter research, and medical applications. The emphasis throughout is on concepts to facilitate understanding of the essence of each topic in this diverse and cross-disciplinary field involving nuclear physics, astrophysics, and particle accelerators. A brief description of major RIB facilities is also presented. Exotic nuclei are difficult to produce in enough numbers and their production involves different nuclear reaction routes and a wide range of advanced technologies, which are presented in a comprehensive manner. Experimental techniques used to study exotic nuclei are provided with examples highlighting the intricate nature of such experiments. Another unique feature is the open-ended nature of the discussions, bringing out the future challenges and possibilities in this evolving field. The book offers an excellent overview of concepts and techniques involved in RIB science for new researchers entering the field as well as professionals.
This book fills the need for a coherent work combining carefully reviewed articles into a comprehensive overview accessible to research groups and lecturers. Next to fundamental physics, contributions on topical medical and material science issues are included.
A comprehensive handbook of analytical techniques in geochemistry which provides the student and the professional with an understanding of the wide spectrum of different analytical methods that can be applied to Earth and environmental materials, together with a critical appreciation of their relative merits and limitations.
Comprehensive overview of the spectroscopic, mineralogical, and geochemical techniques used in planetary remote sensing.