Download Free Large Scale Neuronal Theories Of The Brain Book in PDF and EPUB Free Download. You can read online Large Scale Neuronal Theories Of The Brain and write the review.

This book originated at a small and informal workshop held in December of 1992 in Idyllwild, a relatively secluded resort village situated amid forests in the San Jacinto Mountains above Palm Springs in Southern California. Eighteen colleagues from a broad range of disciplines, including biophysics, electrophysiology, neuroanatomy, psychophysics, clinical studies, mathematics and computer vision, discussed 'Large Scale Models of the Brain, ' that is, theories and models that cover a broad range of phenomena, including early and late vision, various memory systems, selective attention, and the neuronal code underlying figure-ground segregation and awareness (for a brief summary of this meeting, see Stevens 1993). The bias in the selection of the speakers toward researchers in the area of visual perception reflects both the academic background of one of the organizers as well as the (relative) more mature status of vision compared with other modalities. This should not be surprising given the emphasis we humans place on'seeing' for orienting ourselves, as well as the intense scrutiny visual processes have received due to their obvious usefullness in military, industrial, and robotic applications. JMD.
The first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines. Active inference is a way of understanding sentient behavior—a theory that characterizes perception, planning, and action in terms of probabilistic inference. Developed by theoretical neuroscientist Karl Friston over years of groundbreaking research, active inference provides an integrated perspective on brain, cognition, and behavior that is increasingly used across multiple disciplines including neuroscience, psychology, and philosophy. Active inference puts the action into perception. This book offers the first comprehensive treatment of active inference, covering theory, applications, and cognitive domains. Active inference is a “first principles” approach to understanding behavior and the brain, framed in terms of a single imperative to minimize free energy. The book emphasizes the implications of the free energy principle for understanding how the brain works. It first introduces active inference both conceptually and formally, contextualizing it within current theories of cognition. It then provides specific examples of computational models that use active inference to explain such cognitive phenomena as perception, attention, memory, and planning.
Experts review the latest research on the neocortex and consider potential directions for future research. Over the past decade, technological advances have dramatically increased information on the structural and functional organization of the brain, especially the cerebral cortex. This explosion of data has radically expanded our ability to characterize neural circuits and intervene at increasingly higher resolutions, but it is unclear how this has informed our understanding of underlying mechanisms and processes. In search of a conceptual framework to guide future research, leading researchers address in this volume the evolution and ontogenetic development of cortical structures, the cortical connectome, and functional properties of neuronal circuits and populations. They explore what constitutes “uniquely human” mental capacities and whether neural solutions and computations can be shared across species or repurposed for potentially uniquely human capacities. Contributors Danielle S. Bassett, Randy M. Bruno, Elizabeth A. Buffalo, Michael E. Coulter, Hermann Cuntz, Stanislas Dehaene, James J. DiCarlo, Pascal Fries, Karl J. Friston, Asif A. Ghazanfar, Anne-Lise Giraud, Joshua I. Gold, Scott T. Grafton, Jennifer M. Groh, Elizabeth A. Grove, Saskia Haegens, Kenneth D. Harris, Kristen M. Harris, Nicholas G. Hatsopoulos, Tarik F. Haydar, Takao K. Hensch, Wieland B. Huttner, Matthias Kaschube, Gilles Laurent, David A. Leopold, Johannes Leugering, Belen Lorente-Galdos, Jason N. MacLean, David A. McCormick, Lucia Melloni, Anish Mitra, Zoltán Molnár, Sydney K. Muchnik, Pascal Nieters, Marcel Oberlaender, Bijan Pesaran, Christopher I. Petkov, Gordon Pipa, David Poeppel, Marcus E. Raichle, Pasko Rakic, John H. Reynolds, Ryan V. Raut, John L. Rubenstein, Andrew B. Schwartz, Terrence J. Sejnowski, Nenad Sestan, Debra L. Silver, Wolf Singer, Peter L. Strick, Michael P. Stryker, Mriganka Sur, Mary Elizabeth Sutherland, Maria Antonietta Tosches, William A. Tyler, Martin Vinck, Christopher A. Walsh, Perry Zurn
This book brings together leading investigators who represent various aspects of brain dynamics with the goal of presenting state-of-the-art current progress and address future developments. The individual chapters cover several fascinating facets of contemporary neuroscience from elementary computation of neurons, mesoscopic network oscillations, internally generated assembly sequences in the service of cognition, large-scale neuronal interactions within and across systems, the impact of sleep on cognition, memory, motor-sensory integration, spatial navigation, large-scale computation and consciousness. Each of these topics require appropriate levels of analyses with sufficiently high temporal and spatial resolution of neuronal activity in both local and global networks, supplemented by models and theories to explain how different levels of brain dynamics interact with each other and how the failure of such interactions results in neurologic and mental disease. While such complex questions cannot be answered exhaustively by a dozen or so chapters, this volume offers a nice synthesis of current thinking and work-in-progress on micro-, meso- and macro- dynamics of the brain.
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
How powerful new methods in nonlinear control engineering can be applied to neuroscience, from fundamental model formulation to advanced medical applications. Over the past sixty years, powerful methods of model-based control engineering have been responsible for such dramatic advances in engineering systems as autolanding aircraft, autonomous vehicles, and even weather forecasting. Over those same decades, our models of the nervous system have evolved from single-cell membranes to neuronal networks to large-scale models of the human brain. Yet until recently control theory was completely inapplicable to the types of nonlinear models being developed in neuroscience. The revolution in nonlinear control engineering in the late 1990s has made the intersection of control theory and neuroscience possible. In Neural Control Engineering, Steven Schiff seeks to bridge the two fields, examining the application of new methods in nonlinear control engineering to neuroscience. After presenting extensive material on formulating computational neuroscience models in a control environment—including some fundamentals of the algorithms helpful in crossing the divide from intuition to effective application—Schiff examines a range of applications, including brain-machine interfaces and neural stimulation. He reports on research that he and his colleagues have undertaken showing that nonlinear control theory methods can be applied to models of single cells, small neuronal networks, and large-scale networks in disease states of Parkinson's disease and epilepsy. With Neural Control Engineering the reader acquires a working knowledge of the fundamentals of control theory and computational neuroscience sufficient not only to understand the literature in this trandisciplinary area but also to begin working to advance the field. The book will serve as an essential guide for scientists in either biology or engineering and for physicians who wish to gain expertise in these areas.
Theoretical neuroscience provides a quantitative basis for describing what nervous systems do, determining how they function, and uncovering the general principles by which they operate. This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory. The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.
A comprehensive, integrated, and accessible textbook presenting core neuroscientific topics from a computational perspective, tracing a path from cells and circuits to behavior and cognition. This textbook presents a wide range of subjects in neuroscience from a computational perspective. It offers a comprehensive, integrated introduction to core topics, using computational tools to trace a path from neurons and circuits to behavior and cognition. Moreover, the chapters show how computational neuroscience—methods for modeling the causal interactions underlying neural systems—complements empirical research in advancing the understanding of brain and behavior. The chapters—all by leaders in the field, and carefully integrated by the editors—cover such subjects as action and motor control; neuroplasticity, neuromodulation, and reinforcement learning; vision; and language—the core of human cognition. The book can be used for advanced undergraduate or graduate level courses. It presents all necessary background in neuroscience beyond basic facts about neurons and synapses and general ideas about the structure and function of the human brain. Students should be familiar with differential equations and probability theory, and be able to pick up the basics of programming in MATLAB and/or Python. Slides, exercises, and other ancillary materials are freely available online, and many of the models described in the chapters are documented in the brain operation database, BODB (which is also described in a book chapter). Contributors Michael A. Arbib, Joseph Ayers, James Bednar, Andrej Bicanski, James J. Bonaiuto, Nicolas Brunel, Jean-Marie Cabelguen, Carmen Canavier, Angelo Cangelosi, Richard P. Cooper, Carlos R. Cortes, Nathaniel Daw, Paul Dean, Peter Ford Dominey, Pierre Enel, Jean-Marc Fellous, Stefano Fusi, Wulfram Gerstner, Frank Grasso, Jacqueline A. Griego, Ziad M. Hafed, Michael E. Hasselmo, Auke Ijspeert, Stephanie Jones, Daniel Kersten, Jeremie Knuesel, Owen Lewis, William W. Lytton, Tomaso Poggio, John Porrill, Tony J. Prescott, John Rinzel, Edmund Rolls, Jonathan Rubin, Nicolas Schweighofer, Mohamed A. Sherif, Malle A. Tagamets, Paul F. M. J. Verschure, Nathan Vierling-Claasen, Xiao-Jing Wang, Christopher Williams, Ransom Winder, Alan L. Yuille
Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.
The first volume in this series (The View from Within, ed. Francisco Varela and Jonathan Shear) was a study of first-person approaches to the study of consciousness. Second-person 'I-You' relations are central to human life yet have been neglected in consciousness research. This book puts that right, and goes further by including descriptions of animal 'person-to-person' interactions from primatologists Barbara Smuts and Sue Savage-Rumbaugh. Other contributions are drawn from fields as diverse as Japanese philosophy and Buddhist studies, neurophysiology, phenomenology and neuropsychology - including clinical studies on autism and face-recognition disorders.