Download Free Land Atmosphere Interaction Trace Gas Exchange Book in PDF and EPUB Free Download. You can read online Land Atmosphere Interaction Trace Gas Exchange and write the review.

The oceans and atmosphere interact through various processes, including the transfer of momentum, heat, gases and particles. In this book leading international experts come together to provide a state-of-the-art account of these exchanges and their role in the Earth-system, with particular focus on gases and particles. Chapters in the book cover: i) the ocean-atmosphere exchange of short-lived trace gases; ii) mechanisms and models of interfacial exchange (including transfer velocity parameterisations); iii) ocean-atmosphere exchange of the greenhouse gases carbon dioxide, methane and nitrous oxide; iv) ocean atmosphere exchange of particles and v) current and future data collection and synthesis efforts. The scope of the book extends to the biogeochemical responses to emitted / deposited material and interactions and feedbacks in the wider Earth-system context. This work constitutes a highly detailed synthesis and reference; of interest to higher-level university students (Masters, PhD) and researchers in ocean-atmosphere interactions and related fields (Earth-system science, marine / atmospheric biogeochemistry / climate). Production of this book was supported and funded by the EU COST Action 735 and coordinated by the International SOLAS (Surface Ocean- Lower Atmosphere Study) project office.
This volume summarizes the current knowledge on the exchange of trace gases between forests and the atmosphere with the restriction that exclusively carbon and nitrogen compounds are included. For this purpose the volume brings together and interconnects knowledge from different disciplines of biological and atmospheric sciences. It covers microbial and plant processes involved in the production and consumption of these trace gases; the exchange processes between forest soils and vegetation on the one hand, and the atmosphere on the other hand; the fate of the trace gases exchanged inside the atmosphere as well as environmental influences on the exchange of trace gases between forest ecosystems and the atmosphere. With this interdisciplinary approach the volume provides the background for an evaluation of the exchange of trace gases between forest ecosystems and the atmosphere and man-made disturbances of this exchange.
When considering biosphere–atmosphere exchange of trace gases and volatile aerosols, significant advances have been made both from an experimental and modelling point of view and on several scales. This was particularly stimulated by the availability of new datasets generated from improvements in analytical methods and flux measurement techniques. Recent research advances allow us, not only to identify major mechanisms and factors affecting the exchanges between the biosphere and the atmosphere, but also to recognize several gaps in the methodologies used in accounting for emissions and deposition in landscape and global scale models. This work aims at (i) reviewing exchange processes and modelling schemes, parameterisations and datasets, (ii) presenting a common conceptual framework to model soil-vegetation-atmosphere exchange of reactive trace gases and aerosols accounting for in-canopy transfer chemical interactions and (iii) discussing the key elements of the agreed framework.
This text aims to promote a better understanding of land use and land-cover change in the assessment and management of global environmental resources, and to develop a comparative framework for assessing these changes.
Encyclopedia of Atmospheric Sciences, Second Edition, Six Volume Set is an authoritative resource covering all aspects of atmospheric sciences, including both theory and applications. With more than 320 articles and 1,600 figures and photographs, this revised version of the award-winning first edition offers comprehensive coverage of this important field. The six volumes in this set contain broad-ranging articles on topics such as atmospheric chemistry, biogeochemical cycles, boundary layers, clouds, general circulation, global change, mesoscale meteorology, ozone, radar, satellite remote sensing, and weather prediction. The Encyclopedia is an ideal resource for academia, government, and industry in the fields of atmospheric, ocean, and environmental sciences. It is written at a level that allows undergraduate students to understand the material, while providing active researchers with the latest information in the field. Covers all aspects of atmospheric sciences—including both theory and applications Presents more than 320 articles and more than 1,600 figures and photographs Broad-ranging articles include topics such as atmospheric chemistry, biogeochemical cycles, boundary layers, clouds, general circulation, global change, mesoscale meteorology, ozone, radar, satellite remote sensing, and weather prediction An ideal resource for academia, government, and industry in the fields of atmospheric, ocean, and environmental sciences
Fluxes of trace gases, water and energy - the 'breathing of the biosphere' - are controlled by a large number of interacting physical, chemical, biological and ecological processes. In this interdisciplinary book, the authors provide the tools to understand and quantitatively analyse fluxes of energy, organic compounds such as terpenes, and trace gases including carbon dioxide, water vapour and methane. It first introduces the fundamental principles affecting the supply and demand for trace gas exchange at the leaf and soil scales: thermodynamics, diffusion, turbulence and physiology. It then builds on these principles to model the exchange of water, carbon dioxide, terpenes and stable isotopes at the ecosystem scale. Detailed mathematical derivations of commonly used relations in biosphere-atmosphere interactions are provided for reference in appendices. An accessible introduction for graduate students and a key resource for researchers in related fields, such as atmospheric science, hydrology, meteorology, climate science, biogeochemistry and ecosystem ecology.
It is well known that the interactions between land surfaces and the atmosphere, and the resulting exchanges in water and energy have a tremendous affect on climate. The inadequate representation of land-atmosphere interactions is a major weakness in current climate models, and is providing the motivation for the HAPEX and ISLSCP experiments as well as the proposed Global Energy and Water Experiment (GEWEX) and the Earth Observing System (EOS) mission. The inadequate representation reflects the recognition that the well-known phys ical relationships, which are well described at small scales, result in different relationships when represented at the scales used in climate models. Understanding this transition in the mathematical relationships with increased space-time scales appears to be very difficult, and has led to different approaches; at one extreme, the famous "bucket" model where the land-surface is a simple one layer storage without vegetation; the other extreme may be Seller's Simple Biosphere Model (Sib) where one big leaf covers the climate model grid. Given the heterogeneous nature of landforms, soils and vegetation within a climate model grid, the development of new land surface parameterizations, and their verification through large scale experiments is perceived to be a challenging area of research for the hydrology and meteorology communities. This book evolved from a workshop held at Princeton University to explore the status of land surface parameterizations within climate models, and how observa tional data can be used to assess these parameterizations and improve models.
The interactions of biogeochemical cycles influence and maintain our climate system. Land use and fossil fuel emissions are currently impacting the biogeochemical cycles of carbon, nitrogen and sulfur on land, in the atmosphere, and in the oceans.This edited volume brings together 27 scholarly contributions on the state of our knowledge of earth system interactions among the oceans, land, and atmosphere. A unique feature of this treatment is the focus on the paleoclimatic and paleobiotic context for investigating these complex interrelationships.* Eight-page colour insert to highlight the latest research* A unique feature of this treatment is the focus on the paleoclimatic context for investigating these complex interrelationships.
This volume summarizes the current knowledge on the exchange of trace gases between forests and the atmosphere with the restriction that exclusively carbon and nitrogen compounds are included. For this purpose the volume brings together and interconnects knowledge from different disciplines of biological and atmospheric sciences. It covers microbial and plant processes involved in the production and consumption of these trace gases; the exchange processes between forest soils and vegetation on the one hand, and the atmosphere on the other hand; the fate of the trace gases exchanged inside the atmosphere as well as environmental influences on the exchange of trace gases between forest ecosystems and the atmosphere. With this interdisciplinary approach the volume provides the background for an evaluation of the exchange of trace gases between forest ecosystems and the atmosphere and man-made disturbances of this exchange.