Download Free Laminated Composite Plates And Shells Book in PDF and EPUB Free Download. You can read online Laminated Composite Plates And Shells and write the review.

The second edition of this popular text provides complete, detailed coverage of the various theories, analytical solutions, and finite element models of laminated composite plates and shells. The book reflects advances in materials modeling in general and composite materials and structures in particular. It includes a chapter dedicated to the theory and analysis of laminated shells, discussions on smart structures and functionally graded materials, exercises and examples, and chapters that were reorganized from the first edition to improve the clarity of the presentation.
Laminated Composite Plates and Shells presents a systematic and comprehensive coverage of the three-dimensional modelling of these structures. It uses the state space approach to provide novel tools for accurate three-dimensional analyses of thin and thick structural components composed of laminated composite materials. In contrast to the traditional treatment of laminated materials, the state space method guarantees a continuous interfacial stress field across material boundaries. Other unique features of the analysis include the non-dependency of a problem's degrees of freedom on the number of material layers of a laminate. Apart from the introductions to composite materials, three-dimensional elasticity and the concept of state space equations presented in the first three chapters, the book reviews available analytical and numerical three-dimensional state space solutions for bending, vibration and buckling of laminated composite plates and shells of various shapes. The applications of the state space method also include the analyses of piezoelectric laminates and interfacial stresses near free edges. The book presents numerous tables and graphics that show accurate three-dimensional solutions of laminated structural components. Many of the numerical results presented in the book are important in their own right and also as test problems for validating new numerical methods. Laminated Composite Plates and Shells will be of benefit to all materials and structural engineers looking to understand the detailed behaviour of these important materials. It will also interest academic scientists researching that behaviour and engineers from more specialised fields such as aerospace which are becoming increasingly dependent on composites.
Vibrations drive many engineering designs in today's engineering environment. There has been an enormous amount of research into this area of research over the last decade. This book documents some of the latest research in the field of vibration of composite shells and plates filling a much-needed gap in the market. Laminated composite shells have many engineering applications including aerospace, mechanical, marine and automotive engineering. This book makes an ideal reference for researchers and practicing engineers alike. - The first book of its kind - Documents 10 years of research in the field of composite shells - Many Engineering applications
Composite materials are used in all kinds of engineering structures, medical prosthetic devices, electronic circuit boards, and sports equipment. The subject of these materials is an interdisciplinary area where chemists, material scientists, and chemical, mechanical, and structural engineers contribute to the overall product. This book presents, for the first time, detailed coverage of traditional theories and higher-order theories of laminated composite materials. Much of the text is based on the author's original work on refined theories of laminated composite plates and shells, and analytical and finite element solutions. In addition, the book reviews the basics including mathematical preliminaries, virtual work principles, and variational methods. Mechanics of Laminated Composite Plates: Theory and Analysis makes a great textbook for graduate-level courses on theory and/or analysis of composite laminates, and can be conveniently divided into two sections: Chapters 1-8 for an introductory course, and 9-13 for the advanced course.
This book guides the reader into the modelling of shell structures in applications where advanced composite materials or complex biological materials must be described with great accuracy. A valuable resource for researchers, professionals and graduate students, it presents a variety of practical concepts, diagrams and numerical results.
The second edition of this popular text provides complete, detailed coverage of the various theories, analytical solutions, and finite element models of laminated composite plates and shells. The book reflects advances in materials modeling in general and composite materials and structures in particular. It includes a chapter dedicated to the theory and analysis of laminated shells, discussions on smart structures and functionally graded materials, exercises and examples, and chapters that were reorganized from the first edition to improve the clarity of the presentation.
The contents of this book are related to composite mechanics, nonlinear plate and shell mechanics, damage mechanics, elasto-plastic mechanics, visco-elastic mechanics, piezoelectric elastic mechanics and nonlinear dynamics, which embody the combination and integration among solid mechanics, material science and nonlinear science.
This book provides an in-depth treatment of the study of the stability of engineering structures. Contributions from internationally recognized leaders in the field ensure a wide coverage of engineering disciplines in which structural stability is of importance, in particular the analytical and numerical modelling of structural stability applied to aeronautical, civil, marine and offshore structures. The results from a number of comprehensive experimental test programs are also presented, thus enhancing our understanding of stability phenomena as well as validating the analytical and computational solution schemes presented. A variety of structural materials are investigated with special emphasis on carbon-fibre composites, which are being increasingly utilized in weight-critical structures. Instabilities at the meso- and micro-scales are also discussed. This book will be particularly relevant to professional engineers, graduate students and researchers interested in structural stability.
This text presents a complete treatment of the theory and analysis of elastic plates. It provides detailed coverage of classic and shear deformation plate theories and their solutions by analytical as well as numerical methods for bending, buckling and natural vibrations. Analytical solutions are based on the Navier and Levy solution method, and numerical solutions are based on the Rayleigh-Ritz methods and finite element method. The author address a range of topics, including basic equations of elasticity, virtual work and energy principles, cylindrical bending of plates, rectangular plates and an introduction to the finite element method with applications to plates.