Download Free Laboratory Studies On Proposed Subgrade And Earth Construction Materials Book in PDF and EPUB Free Download. You can read online Laboratory Studies On Proposed Subgrade And Earth Construction Materials and write the review.

The Dynamic Cone Penetrometer (DCP) is a device that is used for the estimation of in situ compaction quality of constructed subgrades and embankments. It is a relatively inexpensive, light-weight and easy to use device that measures the dynamic penetration resistance of the compacted soil, from which an estimate of soil strength and stiffness characteristics can be made. Owing to its ease of use, many DOTs in the U.S. have employed the DCP in their compaction quality control procedures, and over the past few decades, extensive research has been carried out on the development of correlations between the results of the DCP test and the results of strength and stiffness tests performed on compacted soils (e.g., California bearing ratio, and resilient modulus)The objectives of this research are to refine DCP-based quality assurance and quality control correlations for compaction quality control developed by previous research studies carried out at Purdue for the Indiana Department of Transportation, especially focusing on (1) grouping of the soils based on their mechanical response to the DCP loading, and (2) limiting the in situ moisture range of the soils used for development of correlations within -2% of the optimum moisture content of the tested soil. The factors outlined above are studied, and in particular, soil grouping is examined critically. The AASHTO ('A-based') classification employed previously for classification of soils is replaced with a new classification criteria specifically developed for the DCP test. Soils are grouped into one of the two categories of coarse-grained or fine-grained soils on the basis of the size of the dominant particle in the soil. The criteria developed for the classification of soil into one of these two categories is based on index properties of the soil, such as the standard Proctor maximum dry density, optimum moisture content, plasticity index (PI) and fines content.
This book comprises select proceedings of the annual conference of the Indian Geotechnical Society. The conference brings together research and case histories on various aspects of geotechnical and geoenvironmental engineering. The book presents papers on geotechnical applications and case histories, covering topics such as (i) Characterization of Geomaterials and Physical Modelling; (ii) Foundations and Deep Excavations; (iii) Soil Stabilization and Ground Improvement; (iv) Geoenvironmental Engineering and Waste Material Utilization; (v) Soil Dynamics and Earthquake Geotechnical Engineering; (vi) Earth Retaining Structures, Dams and Embankments; (vii) Slope Stability and Landslides; (viii) Transportation Geotechnics; (ix) Geosynthetics Applications; (x) Computational, Analytical and Numerical Modelling; (xi) Rock Engineering, Tunnelling and Underground Constructions; (xii) Forensic Geotechnical Engineering and Case Studies; and (xiii) Others Topics: Behaviour of Unsaturated Soils, Offshore and Marine Geotechnics, Remote Sensing and GIS, Field Investigations, Instrumentation and Monitoring, Retrofitting of Geotechnical Structures, Reliability in Geotechnical Engineering, Geotechnical Education, Codes and Standards, and other relevant topics. The contents of this book are of interest to researchers and practicing engineers alike.