Download Free Knowledge Acquisition For Expert Systems Book in PDF and EPUB Free Download. You can read online Knowledge Acquisition For Expert Systems and write the review.

Building an expert system involves eliciting, analyzing, and interpreting the knowledge that a human expert uses when solving problems. Expe rience has shown that this process of "knowledge acquisition" is both difficult and time consuming and is often a major bottleneck in the production of expert systems. Unfortunately, an adequate theoretical basis for knowledge acquisition has not yet been established. This re quires a classification of knowledge domains and problem-solving tasks and an improved understanding of the relationship between knowledge structures in human and machine. In the meantime, expert system builders need access to information about the techniques currently being employed and their effectiveness in different applications. The aim of this book, therefore, is to draw on the experience of AI scientists, cognitive psychologists, and knowledge engineers in discussing particular acquisition techniques and providing practical advice on their application. Each chapter provides a detailed description of a particular technique or methodology applied within a selected task domain. The relative strengths and weaknesses of the tech nique are summarized at the end of each chapter with some suggested guidelines for its use. We hope that this book will not only serve as a practical handbook for expert system builders, but also be of interest to AI and cognitive scientists who are seeking to develop a theory of knowledge acquisition for expert systems.
This is the first book to provide a step-by-step guide to the methods and practical aspects of acquiring, modelling, storing and sharing knowledge. The reader is led through 47 steps from the inception of a project to its conclusion. Each is described in terms of reasons, required resources, activities, and solutions to common problems. In addition, each step has a checklist which tracks the key items that should be achieved.
This book presents a practical view of the knowledge acquisition process, its methodologies and techniques, in order to enable readers to develop expert systems knowledge bases more effectively. It strikes a balance between presenting (1) summaries of research in the field of knowledge acquisition and (2) methodologies and techniques that have been applied and tested on numerous programs in various contexts. Written for novice knowledge engineers or others tasked with acquiring knowledge for the systematic development of expert systems. The presentation of the material does not presume a background in either computer science or artificial intelligence.
This six-volume set presents cutting-edge advances and applications of expert systems. Because expert systems combine the expertise of engineers, computer scientists, and computer programmers, each group will benefit from buying this important reference work. An "expert system" is a knowledge-based computer system that emulates the decision-making ability of a human expert. The primary role of the expert system is to perform appropriate functions under the close supervision of the human, whose work is supported by that expert system. In the reverse, this same expert system can monitor and double check the human in the performance of a task. Human-computer interaction in our highly complex world requires the development of a wide array of expert systems. Expert systems techniques and applications are presented for a diverse array of topics including Experimental design and decision support The integration of machine learning with knowledge acquisition for the design of expert systems Process planning in design and manufacturing systems and process control applications Knowledge discovery in large-scale knowledge bases Robotic systems Geograhphic information systems Image analysis, recognition and interpretation Cellular automata methods for pattern recognition Real-time fault tolerant control systems CAD-based vision systems in pattern matching processes Financial systems Agricultural applications Medical diagnosis
Computing Methodologies -- Artificial Intelligence.
This book is designed to identify some of the current applications and techniques of artificial intelligence as an aid to solving problems and accomplishing tasks. It provides a general introduction to the various branches of AI which include formal logic, reasoning, knowledge engineering, expert systems, neural networks, and fuzzy logic, etc. The book has been structured into five parts with an emphasis on expert systems: problems and state space search, knowledge engineering, neural networks, fuzzy logic, and Prolog. Features: Introduces the various branches of AI which include formal logic, reasoning, knowledge engineering, expert systems, neural networks, and fuzzy logic, etc. Includes a separate chapter on Prolog to introduce basic programming techniques in AI
Building an expert system involves eliciting, analyzing, and interpreting the knowledge that a human expert uses when solving problems. Expe rience has shown that this process of "knowledge acquisition" is both difficult and time consuming and is often a major bottleneck in the production of expert systems. Unfortunately, an adequate theoretical basis for knowledge acquisition has not yet been established. This re quires a classification of knowledge domains and problem-solving tasks and an improved understanding of the relationship between knowledge structures in human and machine. In the meantime, expert system builders need access to information about the techniques currently being employed and their effectiveness in different applications. The aim of this book, therefore, is to draw on the experience of AI scientists, cognitive psychologists, and knowledge engineers in discussing particular acquisition techniques and providing practical advice on their application. Each chapter provides a detailed description of a particular technique or methodology applied within a selected task domain. The relative strengths and weaknesses of the tech nique are summarized at the end of each chapter with some suggested guidelines for its use. We hope that this book will not only serve as a practical handbook for expert system builders, but also be of interest to AI and cognitive scientists who are seeking to develop a theory of knowledge acquisition for expert systems.
At present one of the main obstacles to a broader application of expert systems is the lack of a theory to tell us which problem-solving methods areavailable for a given problem class. Such a theory could lead to significant progress in the following central aims of the expert system technique: - Evaluating the technical feasibility of expert system projects: This depends on whether there is a suitable problem-solving method, and if possible a corresponding tool, for the given problem class. - Simplifying knowledge acquisition and maintenance: The problem-solving methods provide direct assistance as interpretation models in knowledge acquisition. Also, they make possible the development of problem-specific expert system tools with graphical knowledge acquisition components, which can be used even by experts without programming experience. - Making use of expert systems as a knowledge medium: The structured knowledge in expert systems can be used not only for problem solving but also for knowledge communication and tutorial purposes. With such a theory in mind, this book provides a systematic introduction to expert systems. It describes the basic knowledge representations and the present situation with regard tothe identification, realization, and integration of problem-solving methods for the main problem classes of expert systems: classification (diagnostics), construction, and simulation.
In June of 1983, our expert systems research group at Carnegie Mellon University began to work actively on automating knowledge acquisition for expert systems. In the last five years, we have developed several tools under the pressure and influence of building expert systems for business and industry. These tools include the five described in chapters 2 through 6 - MORE, MOLE, SALT, KNACK and SIZZLE. One experiment, conducted jointly by developers at Digital Equipment Corporation, the Soar research group at Carnegie Mellon, and members of our group, explored automation of knowledge acquisition and code development for XCON (also known as R1), a production-level expert system for configuring DEC computer systems. This work influenced the development of RIME, a programming methodology developed at Digital which is the subject of chapter 7. This book describes the principles that guided our work, looks in detail at the design and operation of each tool or methodology, and reports some lessons learned from the enterprise. of the work, brought out in the introductory chapter, is A common theme that much power can be gained by understanding the roles that domain knowledge plays in problem solving. Each tool can exploit such an understanding because it focuses on a well defined problem-solving method used by the expert systems it builds. Each tool chapter describes the basic problem-solving method assumed by the tool and the leverage provided by committing to the method.