Download Free Kinetics Of Inorganic Reactions Book in PDF and EPUB Free Download. You can read online Kinetics Of Inorganic Reactions and write the review.

The serious study of the reaction mechanisms of transition metal com plexes began some five decades ago. Work was initiated in the United States and Great Britain; the pioneers ofthat era were, inalphabetical order, F. Basolo, R. E. Connick, 1. O. Edwards, C. S. Garner, G. P.Haight, W. C. E. Higgision, E.1. King, R. G. Pearson, H. Taube, M.1. Tobe, and R. G. Wilkins.A larger community of research scientists then entered the field, many of them stu dents ofthose just mentioned. Interest spread elsewhere as well, principally to Asia, Canada, and Europe. Before long, the results ofindividual studies were being consolidated into models, many of which traced their origins to the better-established field of mechanistic organic chemistry. For a time this sufficed, but major revisions and new assignments of mechanism became necessary for both ligand sub stitution and oxidation-reduction reactions. Mechanistic inorganic chemistry thus took on a shape of its own. This process has brought us to the present time. Interests have expanded both to include new and more complex species (e.g., metalloproteins) and a wealth of new experimental techniques that have developed mechanisms in ever-finer detail. This is the story the author tells, and in so doing he weaves in the identities of the investigators with the story he has to tell. This makes an enjoyable as well as informative reading.
Kinetics of Inorganic Reactions provides a comprehensive account of the mechanisms of inorganic reaction. The book is comprised of 15 chapters that deal with the two main fields of inorganic reaction, the homogeneous gas-phase reactions and solution reactions. The first chapter of the text provides an introduction to some of the basic concepts in inorganic reaction, which include the mechanisms of a reaction, reactions in different phases, and the feasibilities of a reaction. Next, the book details the experimental techniques and treatment of data. The next series of chapters talks about gas-phase reactions. The book also dedicates a chapter in covering various types of reactions, including isotopic reaction and redox reaction. Chapters 12 to 14 deal with substitution reactions, while Chapter 15 talks about acid-base reactions. The text will be most useful to chemists and chemical engineers, particularly those who deal with inorganic chemistry.
The whole of Volume 22 is devoted to the kinetics and mechanisms of the decomposition and interaction of inorganic solids, extended to include metal carboxylates. After an introductory chapter on the characteristic features of reactions in the solid phase, experimental methods of investigation of solid reactions and the measurement of reaction rates are reviewed in Chapter 2 and the theory of solid state kinetics in Chapter 3. The reactions of single substances, loosely grouped on the basis of a common anion since it is this constituent which most frequently undergoes breakdown, are discussed in Chapter 4, the sequence being effectively that of increasing anion complexity. Chapter 5 covers reactions between solids, and includes catalytic processes where one solid component remains unchanged, double compound formation and rate processes involving the interactions of more than three crystalline phases. The final chapter summarises the general conclusions drawn in the text of Chapter 2-5.
Offers complete coverage of basic inorganic reaction mechanisms that brings readers up to date on developments in the field. Mechanistic concepts introduced will provoke consideration of larger categories of inorganic reactions without the need for expert knowledge. Theoretical and experimental methods are described, as well as the possibilities offered by each technique, the kind of information obtained, the limitations of each, and methods for handling experimental data. Carefully clarifies the relationship between mechanism and kinetics, and corresponding concepts. Features a chapter on inorganic photochemistry and the related energy conversion--a branch of inorganic reaction mechanisms that is making rapid advances.
Jetzt in neuer Auflage: Das erfolgreiche Lehrwerk über Kinetik und Mechanismen anorganischer und organometallischer Reaktionen für fortgeschrittene Studenten! Hervorragend geeignet als Begleiter eines Vorlesungssemesters. Mit zahlreichen Übungsaufgaben; für eine bessere Übersicht sorgen Zusammenfassungen am Ende jedes Kapitels.
Describes how to conduct kinetic experiments with heterogeneous catalysts, analyze and model the results, and characterize the catalysts Detailed analysis of mass transfer in liquid phase reactions involving porous catalysts. Important to the fine chemicals and pharmaceutical industries so it has appeal to many researchers in both industry and academia (chemical engineering and chemistry departments
Chemical Kinetics The Study of Reaction Rates in Solution Kenneth A. Connors This chemical kinetics book blends physical theory, phenomenology and empiricism to provide a guide to the experimental practice and interpretation of reaction kinetics in solution. It is suitable for courses in chemical kinetics at the graduate and advanced undergraduate levels. This book will appeal to students in physical organic chemistry, physical inorganic chemistry, biophysical chemistry, biochemistry, pharmaceutical chemistry and water chemistry all fields concerned with the rates of chemical reactions in the solution phase.
This go-to text provides information and insight into physical inorganic chemistry essential to our understanding of chemical reactions on the molecular level. One of the only books in the field of inorganic physical chemistry with an emphasis on mechanisms, it features contributors at the forefront of research in their particular fields. This essential text discusses the latest developments in a number of topics currently among the most debated and researched in the world of chemistry, related to the future of solar energy, hydrogen energy, biorenewables, catalysis, environment, atmosphere, and human health.
GEORGE CHRISTOU Indiana University, Bloomington I am no doubt representative of a large number of current inorganic chemists in having obtained my undergraduate and postgraduate degrees in the 1970s. It was during this period that I began my continuing love affair with this subject, and the fact that it happened while I was a student in an organic laboratory is beside the point. I was always enchanted by the more physical aspects of inorganic chemistry; while being captivated from an early stage by the synthetic side, and the measure of creation with a small c that it entails, I nevertheless found the application of various theoretical, spectroscopic and physicochemical techniques to inorganic compounds to be fascinating, stimulating, educational and downright exciting. The various bonding theories, for example, and their use to explain or interpret spectroscopic observations were more or less universally accepted as belonging within the realm of inorganic chemistry, and textbooks of the day had whole sections on bonding theories, magnetism, kinetics, electron-transfer mechanisms and so on. However, things changed, and subsequent inorganic chemistry teaching texts tended to emphasize the more synthetic and descriptive side of the field. There are a number of reasons for this, and they no doubt include the rise of diamagnetic organometallic chemistry as the dominant subdiscipline within inorganic chemistry and its relative narrowness vis-d-vis physical methods required for its prosecution.