Download Free Journal Of Nano Research Vol 59 Book in PDF and EPUB Free Download. You can read online Journal Of Nano Research Vol 59 and write the review.

The 59th volume of the "Journal of Nano Research" contains peer-reviewed papers by the results of the research from the field of synthesis and properties of various nanomaterials and nanostructures for the biomedical and industrial application. We hope that this volume of the journal will be useful and interesting for a wide range of engineers, scientists, and students whose activity is related with the creation and using of nanomaterials and nanotechnologies in different branches of human activity.
The 54th volume of the "Journal of Nano Research" contains peer-reviewed papers by the results of the research from the field of synthesis and the use of various nanomaterials and nanostructures. We hope that this volume of the journal will be useful and interesting for a wide range of engineers, scientists, and students whose activity is related with the creation and using of nanomaterials and nanotechnologies in different branches of human activity.
The 56th volume of the "Journal of Nano Research" presents readers with the collection of peer-reviewed papers by the results of the research from the field of synthesis and the use of various nanomaterials and nanostructures. We hope that this volume of the journal will be useful and interesting for a wide range of engineers, scientists, and students whose activity is related with the creation and using of nanomaterials and nanotechnologies in different branches of human activity.
The second volume of the Annual Review of Nano Research focuses mainly on nanofabrication, nanomaterials and nanostructures, and energy application of nanomaterials. All of the review chapters are contributed by well-published scientists and bring the most recent advancements in selected topics to the readers. This review volume will perfectly serve dual purposes: either as an excellent introduction to scientists whose expertise lies in different fields but who are interested in learning about nanotechnology, or as a quick reference for experts active in the field of nanotechnology and nanoscience.
Sustainable world economy requires a steady supply of crude oil without any production constraints. Thus, the ever-increasing energy demand of the entire world can be mostly met through the enhanced production from crude oil from existing reservoirs. With the fact that newer reservoirs with large quantities of crude oil could not be explored at a faster pace, it will be inevitable to produce the crude oil from matured reservoirs at an affordable cost. Among alternate technologies, the chemical enhanced oil recovery (EOR) technique has promising potential to recover residual oil from matured reservoirs being subjected to primary and secondary water flooding operations. Due to pertinent complex phenomena that often have a combinatorial role and influence, the implementation of chemical EOR schemes such as alkali/surfactant/polymer flooding and their combinations necessitates upon a fundamental understanding of the potential mechanisms and their influences upon one another and desired response variables. Addressing these issues, the book attempts to provide useful screening criteria, guidelines, and rules of thumb for the identification of process parametric sets (including reservoir characteristics) and response characteristics (such as IFT, adsorption etc.,) that favor alternate chemical EOR systems. Finally, the book highlights the relevance of nanofluid/nanoparticle for conventional and unconventional reservoirs and serves as a needful resource to understand the emerging oil recovery technology. Overall, the volume will be of greater relevance for practicing engineers and consultants that wish to accelerate on field applications of chemical and nano-fluid EOR systems. Further, to those budding engineers that wish to improvise upon their technical know-how, the book will serve as a much-needed repository.
Artificial intelligence (AI), machine learning, and advanced electronic circuits involve learning from every data input and using those inputs to generate new rules for future business analytics. AI and machine learning are now giving us new opportunities to use big data that we already had, as well as unleash a whole lot of new use cases with new data types. With the increasing use of AI dealing with highly sensitive information such as healthcare, adequate security measures are required to securely store and transmit this information. This book provides a broader coverage of the basic aspects of advanced circuits design and applications. AI for Big Data-Based Engineering Applications from Security Perspectives is an integrated source that aims at understanding the basic concepts associated with the security of advanced circuits. The content includes theoretical frameworks and recent empirical findings in the field to understand the associated principles, key challenges, and recent real-time applications of advanced circuits, AI, and big data security. It illustrates the notions, models, and terminologies that are widely used in the area of Very Large Scale Integration (VLSI) circuits, security, identifies the existing security issues in the field, and evaluates the underlying factors that influence system security. This work emphasizes the idea of understanding the motivation behind advanced circuit design to establish the AI interface and to mitigate security attacks in a better way for big data. This book also outlines exciting areas of future research where already existing methodologies can be implemented. This material is suitable for students, researchers, and professionals with research interest in AI for big data–based engineering applications, faculty members across universities, and software developers.
This book explores up-to-date research trends and achievements on low-power and high-speed technologies in both electronics and optics. It offers unique insight into low-power and high-speed approaches ranging from devices, ICs, sub-systems and networks that can be exploited for future mobile devices, 5G networks, Internet of Things (IoT), and data centers. It collects heterogeneous topics in place to catch and predict future research directions of devices, circuits, subsystems, and networks for low-power and higher-speed technologies. Even it handles about artificial intelligence (AI) showing examples how AI technology can be combined with concurrent electronics. Written by top international experts in both industry and academia, the book discusses new devices, such as Si-on-chip laser, interconnections using graphenes, machine learning combined with CMOS technology, progresses of SiGe devices for higher-speed electronices for optic, co-design low-power and high-speed circuits for optical interconnect, low-power network-on-chip (NoC) router, X-ray quantum counting, and a design of low-power power amplifiers. Covers modern high-speed and low-power electronics and photonics. Discusses novel nano-devices, electronics & photonic sub-systems for high-speed and low-power systems, and many other emerging technologies like Si photonic technology, Si-on-chip laser, low-power driver for optic device, and network-on-chip router. Includes practical applications and recent results with respect to emerging low-power systems. Addresses the future perspective of silicon photonics as a low-power interconnections and communication applications.
Annual Review of Nano Research, Volume 3 focuses mainly on nanofabrication, nanomaterials and nanostructures, and energy application of nanomaterials. All the review chapters are contributed by well-published scientists and bring the most recent advancement in selected topics to the readers. This review volume will serve dual purposes: either as an excellent introduction to scientists whose expertise lie in different fields but who are interested in learning about nanotechnology, or as a quick reference for experts active in the field of nanoscience and nanotechnology.
"TRB's second Strategic Highway Research Program (SHRP 2) Report S2-R06B-RW-1: Evaluating Applications of Field Spectroscopy Devices to Fingerprint Commonly Used Construction Materials documents evaluation results of practical, portable spectroscopic equipment for in-situ analysis of a wide range of commonly used construction materials. The report also includes proposed American Association of State Highway and Transportation Officials (AASHTO) standards of practice for the analysis of titanium content in traffic paints by X-ray fluorescence and identification of chemical admixtures by attenuated total reflectance. The results of Renewal Project R06B, which produced SHRP 2 Report S2-R06B-RW-1, will be incorporated into an electronic repository for practitioners, known as the NDToolbox, which will provide information regarding recommended technologies for the detection of a particular deterioration. The NDToolbox is in the process of being created by SHRP 2 Renewal Project R06A, which has released SHRP 2 Report S2-R06A-RR-1: Nondestructive Testing to Identify Concrete Bridge Deck Deterioration that identifies nondestructive testing technologies for detecting and characterizing common forms of deterioration in concrete bridge decks. Renewal Project R06B is one of seven follow-on projects to SHRP Renewal Project R06 that produced SHRP 2 Report S2-R06-RW: A Plan for Developing High-Speed, Nondestructive Testing Procedures for Both Design Evaluation and Construction Inspection, which examines existing and emerging nondestructive evaluation (NDE) technologies and their current state of implementation to satisfy the NDE needs for highway renewal"--TRB Website.
This "Journal of Nano Research" issue collects peer-reviewed articles reflecting the scientific and engineering research results in the synthesis methods, properties analysis, and application methods of nanomaterials and nanoparticles to solve a wide range of engineering objectives. The solutions presented will be practical in machinery and chemical production, environmental protection, medicine, electrochemical water splitting for hydrogen synthesis and more.