Download Free Journal Of Nano Research Vol 47 Book in PDF and EPUB Free Download. You can read online Journal Of Nano Research Vol 47 and write the review.

This topical volume of Journal of Nano Research (JNanoR) covers a very broad cross-section of the manufacturing and physical behavior of nanomaterials that rely on solid and liquid diffusion processes. The materials covered range from carbon nanotubes (CNTs), nanoparticles and nanopowders, and nanoporous composites to graphene. The presented applications cover many different fields, one of them featured in a number articles is the surface improvement due to coatings and nanolayers.
The 56th volume of the "Journal of Nano Research" presents readers with the collection of peer-reviewed papers by the results of the research from the field of synthesis and the use of various nanomaterials and nanostructures. We hope that this volume of the journal will be useful and interesting for a wide range of engineers, scientists, and students whose activity is related with the creation and using of nanomaterials and nanotechnologies in different branches of human activity.
The subject of advanced materials in catalysisbrings together recent advancements in materials synthesis and technologies to the design of novel and smart catalysts used in the field of catalysis. Nanomaterials in general show an important role in chemical processing as adsorbents, catalysts, catalyst supports and membranes, and form the basis of cutting-edge technology because of their unique structural and surface properties. Advanced Catalytic Materials is written by a distinguished group of contributors and the chapters provide comprehensive coverage of the current literature, up-to-date overviews of all aspects of advanced materials in catalysis, and present the skills needed for designing and synthesizing advanced materials. The book also showcases many topics concerning the fast-developing area of materials for catalysis and their emerging applications. The book is divided into three parts: Nanocatalysts – Architecture and Design; Organic and Inorganic Catalytic Transformations; and Functional Catalysis: Fundamentals and Applications. Specifically, the chapters discuss the following subjects: Environmental applications of multifunctional nanocomposite catalytic materials Transformation of nanostructured functional precursors using soft chemistry Graphenes in heterogeneous catalysis Gold nanoparticles-graphene composites material for catalytic application Hydrogen generation from chemical hydrides Ring-opening polymerization of poly(lactic acid) Catalytic performance of metal alkoxides Cycloaddition of CO2 and epoxides over reusable solid catalysts Biomass derived fine chemicals using catalytic metal bio-composites Homoleptic metal carbonyls in organic transformation Zeolites: smart materials for novel, efficient, and versatile catalysis Optimizing zeolitic catalysis for environmental remediation
This book discusses the overview and importance of the supercapacitor to the society as well as community. It expounds on the study's probable impact on education, science, technology, and ongoing research. It also gives the justification for the study in terms of contribution to theory and practice. This book may contribute to the novel scientific knowledge on 2D nanomaterial based electrodes for supercapacitor. The potential markets of this device include consumer electronics as well as hybrid electric vehicles. Lastly, it is hoped that this fundamental understanding of the intercalation of electrolyte ions to the 2D nanomaterial's surface would enhance the supercapacitor performances.
The aim of this book is to provide an overview of the importance of stoichiometry in the biomedical field. It proposes a collection of selected research articles and reviews which provide up-to-date information related to stoichiometry at various levels. The first section deals with host-guest chemistry, focusing on selected calixarenes, cyclodextrins and crown ethers derivatives. In the second and third sections the book presents some issues concerning stoichiometry of metal complexes and lipids and polymers architecture. The fourth section aims to clarify the role of stoichiometry in the determination of protein interactions, while in the fifth section some selected experimental techniques applied to specific systems are introduced. The last section of the book is an attempt at showing some interesting connections between biomedicine and the environment, introducing the concept of biological stoichiometry. On this basis, the present volume would definitely be an ideal source of scientific information to researchers and scientists involved in biomedicine, biochemistry and other areas involving stoichiometry evaluation.
Annual Review of Nano Research, Volume 3 focuses mainly on nanofabrication, nanomaterials and nanostructures, and energy application of nanomaterials. All the review chapters are contributed by well-published scientists and bring the most recent advancement in selected topics to the readers. This review volume will serve dual purposes: either as an excellent introduction to scientists whose expertise lie in different fields but who are interested in learning about nanotechnology, or as a quick reference for experts active in the field of nanoscience and nanotechnology.
Explores the enormous diversity in social perspectives on the emergence of nanotechnologies under five broad categories: Philosophy, governance, science, representations and arts, and attention is drawn to important research lines and pertinent questions within and across these categories. To stimulate a thorough discussion the book includes pieces of science fiction and visual arts, as well as questions for reflection after each chapter.
The first volume in an exciting new series, Annual Review of Nano Research, this formidable collection of review articles sees renowned contributors from eight different countries tackle the most recent advances in nanofabrication, nanomaterials and nanostructures.The broad coverage of topics in nanotechnology and nanoscience also includes a special focus on the hot topic of biomedical applications of nanomaterials. The important names contributing to the volume include: M R Bockstaller (USA), L Duclaux (France), S Forster (Germany), W Fritzsche (Germany), L Jiang (China), C Lopez (Spain), W J Parak (Germany), B Samori (Italy), U S Schubert (The Netherlands), S Shinkai (Japan), A Stein (USA), S M Hou (China), and Y N Xia (USA).The volume serves both as a handy reference for experts active in the field and as an excellent introduction to scientists whose expertise lies elsewhere but who are interested in learning about this cutting-edge research area.
Digital innovations influence every aspect of life in an increasingly digitalized world. Firms pursuing digital innovations must consider how digital technologies shape the nature, process and outcomes of innovation as well as long- and short-term social, economic and cultural consequences of their offerings. This Handbook contributes to a transdisciplinary understanding of digital innovation with a diverse set of leading scholars and their distinct perspectives. The ideas and principles advanced herein set the agenda for future transdisciplinary research on digital innovation in ways that inform not only firm-level strategies and practices but also policy decisions and science-focused investments.
The World Health Organization in 2004 estimated approximately 1.1 billion people did not have access to clean water and that 35% of Third World residents died from water-borne illnesses. While the situation is grim, recent advances strongly indicate that many of the current water quality problems can be addresses – and potentially resolved – using nanotechnology.Nanotechnology is already having a dramatic impact on research in water quality and Nanotechnology Applications for Clean Water highlights both the challenges and the opportunities for nanotechnology to positively influence this area of environmental protection.Here you will find detailed information on breakthroughs, cutting edge technologies, current research, and future trends that may affect acceptance of widespread applications. The first four parts of the book cover specific topics including using nanotechnology for clean drinking water in both large scale water treatment plants and in point-of-use systems. For instance, recent advances show that many of the current problems involving water quality can be addressed using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes, and nanoparticle enhanced filtration. The book also discusses existing technologies and future potential for groundwater remediation, pollution prevention, and sensors. The final part discusses the inherent societal implications that may affect acceptance of widespread applications. Over 80 leading experts from around the world share their wealth of knowledge in this truly unique reference. Institutions such as Center for the Purification of Water and Systems (Univ. of Illinois at Urbana-Champaign); UCLA Water Technology Center; Carnegie Mellon University, University of Kentucky; The University of Western Ontario; Pacific Northwest National Laboratory; National Institute for Advanced Industrial Science and Technology (Japan), Munasinghe Institute for Development (Sri Lanka) and the Woodrow Wilson Center for Scholars are just a few of the knowledge centers represented in this book. Water quality is a serious, global issue in which government bodies and scientific communities face many challenges in ensuring clean water is available to everyone. Nanotechnology is already showing dramatic results, and this book is an attempt to share current technologies and future possibilities in reaching this goal. From the Foreword:"Researchers and practitioners may find in this volume, key challenges regarding clean water resources. The presentations may crystallize new research and education programs." - Mihail Roco, U.S. National Science Foundation and U.S. Nanotechnology Initiative - Contributors from the US, India, Canada, Japan, UK, Sri Lanka, and South Africa - Provides detailed information on breakthroughs, cutting edge technologies, current research, and future trends that may affect acceptance of widespread applications - Covers specific topics including using nanotechnology for clean drinking water in both large scale water treatment plants and in point-of-use systems - Discusses existing technologies and future potential for groundwater remediation, pollution prevention, and sensors - Highlights both the challenges and the opportunities for nanotechnology to positively influence this area of environmental protection