Download Free Journal Of Geoscience Education Book in PDF and EPUB Free Download. You can read online Journal Of Geoscience Education and write the review.

This book presents research in Geoscience Education focusing on indoor and outdoor environments in which teaching geoscience gains particular relevance, significance and contextualization. The research areas that are presented throughout the thirteen chapters cover a wide variety of subjects ranging from educational resources and fieldwork to science models. Chapters discuss specific geoscience topics such as earthquakes, rocks, fossils and minerals. Other chapters present a more interdisciplinary approach addressing topics that aren’t usually examined, such as geomedicine and geoethics, with a specific focus on sustainable development and their alignment with the school curricula. Throughout the book readers can find research-based arguments illustrated with practical examples, which will help them to innovate in their curriculum development area, classroom practices and pre and in-service teachers’ education. The book challenges readers to improve Geoscience Education by changing the ways of teaching, by enabling students to exploit their natural curiosity, and by spurring a learning process that should not be confined to the classroom but rather maintained throughout life.
Articles refer to teaching at various different levels from kindergarten to graduate school, with sections on teaching: geologic time, space, complex systems, and field-work. Each section includes an introduction, a thematic paper, and commentaries.
Focusing on geoscience, this book applies a uniquely cross-disciplinary perspective to its examination of the relationship between scientific research and teaching at universities. Contributions show how the use of technology and innovative pedagogical design allows students at different stages of their university studies to develop skills and experience in geoscience research. The book offers wide-ranging insight from academics in geoscience, science education and higher education policy and pedagogy, as well as from students and industry experts. The opening section sets the context, with a chapter on teaching and research in the contemporary university by a world-leading academic in higher education, and an essay by the editor on the case of moving from research-implicit to research-enhanced teaching. Part Two addresses the research-teaching nexus in geoscience, offering chapters entitled The Challenge of Combining Research and Teaching: A Young Geoscientist’s Perspective; Teaching on the High Seas: How Field Research Enhances Teaching at All Levels; Curricula and Departmental Strategies to Link Teaching and Geoscience Research; and Geoscience Internships in the Oil and Gas Industry, among others. In Part Three, the use of technology is discussed in chapters such as Using Interactive Virtual Field Guides and Linked Data in Geoscience Teaching and Learning; and Towards Technology- and Research-enhanced Education (TREE): Electronic Feedback as a Teaching Tool in Geoscience. The Program Design section includes chapters on Introducing University Students to Authentic, Hands-on Undergraduate Geoscience Research, and the opportunity to link research and teaching in students’ final projects and more. Geoscience Research and Education: Teaching at Universities is a useful resource for understanding the research-teaching nexus and how it has been implemented in different types of universities and in different countries. Science academics seeking to integrate research into teaching will find the book highly relevant to their work. The emphasis on using technology as a means to link research and teaching will be of great interest and practical benefit to learning technologists, science educators and university policymakers. Together with the companion volume Geoscience Research and Outreach: Schools and Public Engagement, this book showcases the key role that geoscience research plays in a wide spectrum of educational settings.
There are many reasons to be curious about the way people learn, and the past several decades have seen an explosion of research that has important implications for individual learning, schooling, workforce training, and policy. In 2000, How People Learn: Brain, Mind, Experience, and School: Expanded Edition was published and its influence has been wide and deep. The report summarized insights on the nature of learning in school-aged children; described principles for the design of effective learning environments; and provided examples of how that could be implemented in the classroom. Since then, researchers have continued to investigate the nature of learning and have generated new findings related to the neurological processes involved in learning, individual and cultural variability related to learning, and educational technologies. In addition to expanding scientific understanding of the mechanisms of learning and how the brain adapts throughout the lifespan, there have been important discoveries about influences on learning, particularly sociocultural factors and the structure of learning environments. How People Learn II: Learners, Contexts, and Cultures provides a much-needed update incorporating insights gained from this research over the past decade. The book expands on the foundation laid out in the 2000 report and takes an in-depth look at the constellation of influences that affect individual learning. How People Learn II will become an indispensable resource to understand learning throughout the lifespan for educators of students and adults.
Science is built on trust. The assumption is that scientists will conduct their work with integrity, honesty, and a strict adherence to scientific protocols. Written by geoscientists for geoscientists, Scientific Integrity and Ethics in the Geosciences acquaints readers with the fundamental principles of scientific ethics and shows how they apply to everyday work in the classroom, laboratory, and field. Resources are provided throughout to help discuss and implement principles of scientific integrity and ethics. Volume highlights include: Examples of international and national codes and policies Exploration of the role of professional societies in scientific integrity and ethics References to scientific integrity and ethics in publications and research data Discussion of science integrity, ethics, and geoethics in education Extensive coverage of data applications Scientific Integrity and Ethics in the Geosciences is a valuable resource for students, faculty, instructors, and scientists in the geosciences and beyond. It is also useful for geoscientists working in industry, government, and policymaking. Read an interview with the editors to find out more: https://eos.org/editors-vox/ethics-crucial-for-the-future-of-the-geosciences
GSA Special Paper 492 consists of 35 papers that collectively synthesize the development and current uses of Google Earth and associated visualization media in geoscience education and research. Chapters focus on Google Earth and related tools, such as SketchUp, Google Fusion Tables, GigaPan, and LiDAR. Many of these papers include digital media that illustrate and highlight important themes of the texts. This volume is intended to document the state of the art for geoscience applications of geobrowsers, such as Google Earth, along with providing provocative examples of where this technology is headed in the future.
This is the second volume focused on geoethics published by the Geological Society of London. This is a significant step forward in which authors address the maturation of geoethics. The field of geoethics is now ready to be introduced outside the geoscience community as a logical platform for global ethics that addresses anthropogenic changes. Geoethics has a distinction in the geoscientific community for discussing ethical, social and cultural implications of geoscience knowledge, research, practice, education and communication. This provides a common ground for confronting ideas, experiences and proposals on how geosciences can supply additional service to society in order to improve the way humans interact responsibly with the Earth system. This book provides new messages to geoscientists, social scientists, intellectuals, law- and decision-makers, and laypeople. Motivations and actions for facing global anthropogenic changes and their intense impacts on the planet need to be governed by an ethical framework capable of merging a solid conceptual structure with pragmatic approaches based on geoscientific knowledge. This philosophy defines geoethics.