Download Free Journal Of Applied Probability Book in PDF and EPUB Free Download. You can read online Journal Of Applied Probability and write the review.

Concise advanced-level introduction to stochastic processes that arise in applied probability. Poisson process, renewal theory, Markov chains, Brownian motion, much more. Problems. References. Bibliography. 1970 edition.
Despite the fears of university mathematics departments, mathematics educat,ion is growing rather than declining. But the truth of the matter is that the increases are occurring outside departments of mathematics. Engineers, computer scientists, physicists, chemists, economists, statis- cians, biologists, and even philosophers teach and learn a great deal of mathematics. The teaching is not always terribly rigorous, but it tends to be better motivated and better adapted to the needs of students. In my own experience teaching students of biostatistics and mathematical bi- ogy, I attempt to convey both the beauty and utility of probability. This is a tall order, partially because probability theory has its own vocabulary and habits of thought. The axiomatic presentation of advanced probability typically proceeds via measure theory. This approach has the advantage of rigor, but it inwitably misses most of the interesting applications, and many applied scientists rebel against the onslaught of technicalities. In the current book, I endeavor to achieve a balance between theory and app- cations in a rather short compass. While the combination of brevity apd balance sacrifices many of the proofs of a rigorous course, it is still cons- tent with supplying students with many of the relevant theoretical tools. In my opinion, it better to present the mathematical facts without proof rather than omit them altogether.
This book moves systematically through the topic of applied probability from an introductory chapter to such topics as random variables and vectors, stochastic processes, estimation, testing and regression. The topics are well chosen and the presentation is enriched by many examples from real life. Each chapter concludes with many original, solved and unsolved problems and hundreds of multiple choice questions, enabling those unfamiliar with the topics to master them. Additionally appealing are historical notes on the mathematicians mentioned throughout, and a useful bibliography. A distinguishing character of the book is its thorough and succinct handling of the varied topics.
"This book is a highly recommendable survey of mathematical tools and results in applied probability with special emphasis on queueing theory....The second edition at hand is a thoroughly updated and considerably expended version of the first edition.... This book and the way the various topics are balanced are a welcome addition to the literature. It is an indispensable source of information for both advanced graduate students and researchers." --MATHEMATICAL REVIEWS
This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also be identified as the class of non-negative distributions with rational Laplace transforms. If the matrix has the structure of a sub-intensity matrix for a Markov jump process we obtain a PH distribution which allows for nice probabilistic interpretations facilitating the derivation of exact solutions and closed form formulas. The full potential of ME and PH unfolds in their use in stochastic modelling. Several chapters on generic applications, like renewal theory, random walks and regenerative processes, are included together with some specific examples from queueing theory and insurance risk. We emphasize our intention towards applications by including an extensive treatment on statistical methods for PH distributions and related processes that will allow practitioners to calibrate models to real data. Aimed as a textbook for graduate students in applied probability and statistics, the book provides all the necessary background on Poisson processes, Markov chains, jump processes, martingales and re-generative methods. It is our hope that the provided background may encourage researchers and practitioners from other fields, like biology, genetics and medicine, who wish to become acquainted with the matrix-exponential method and its applications.
This book is a result of teaching stochastic processes to junior and senior undergr- uates and beginning graduate students over many years. In teaching such a course, we have realized a need to furnish students with material that gives a mathematical presentation while at the same time providing proper foundations to allow students to build an intuitive feel for probabilistic reasoning. We have tried to maintain a b- ance in presenting advanced but understandable material that sparks an interest and challenges students, without the discouragement that often comes as a consequence of not understanding the material. Our intent in this text is to develop stochastic p- cesses in an elementary but mathematically precise style and to provide suf?cient examples and homework exercises that will permit students to understand the range of application areas for stochastic processes. We also practice active learning in the classroom. In other words, we believe that the traditional practice of lecturing continuously for 50 to 75 minutes is not a very effective method for teaching. Students should somehow engage in the subject m- ter during the teaching session. One effective method for active learning is, after at most 20 minutes of lecture, to assign a small example problem for the students to work and one important tool that the instructor can utilize is the computer. So- times we are fortunate to lecture students in a classroom containing computers with a spreadsheet program, usually Microsoft’s Excel.
This book is an introductionary course in stochastic ordering and dependence in the field of applied probability for readers with some background in mathematics. It is based on lectures and senlinars I have been giving for students at Mathematical Institute of Wroclaw University, and on a graduate course a.t Industrial Engineering Department of Texas A&M University, College Station, and addressed to a reader willing to use for example Lebesgue measure, conditional expectations with respect to sigma fields, martingales, or compensators as a common language in this field. In Chapter 1 a selection of one dimensional orderings is presented together with applications in the theory of queues, some parts of this selection are based on the recent literature (not older than five years). In Chapter 2 the material is centered around the strong stochastic ordering in many dimen sional spaces and functional spaces. Necessary facts about conditioning, Markov processes an"d point processes are introduced together with some classical results such as the product formula and Poissonian departure theorem for Jackson networks, or monotonicity results for some re newal processes, then results on stochastic ordering of networks, re~~ment policies and single server queues connected with Markov renewal processes are given. Chapter 3 is devoted to dependence and relations between dependence and ordering, exem plified by results on queueing networks and point processes among others.
This text is a concise guide to the principles of probability as used in the design and anlysis of engineered products and systems. With today's demand for total quality, products must be enigneered to have an extended lifetime, operating effectivly at all times to match the user's expectations. This book covers probabilistic methods and approaches used in engineering design and analysis in such disciplines as mechanical, civil, electrical, communications and quality engineering. Its emphasis is on structural analysis and mechanical design as well as practical applications.
Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.