Download Free Joint Source Channel Coding For Continuous Amplitude Sources Book in PDF and EPUB Free Download. You can read online Joint Source Channel Coding For Continuous Amplitude Sources and write the review.

This book provides the first comprehensive and easy-to-read discussion of joint source-channel encoding and decoding for source signals with continuous amplitudes. It is a state-of-the-art presentation of this exciting, thriving field of research, making pioneering contributions to the new concept of source-adaptive modulation. The book starts with the basic theory and the motivation for a joint realization of source and channel coding. Specialized chapters deal with practically relevant scenarios such as iterative source-channel decoding and its optimization for a given encoder, and also improved encoder designs by channel-adaptive quantization or source-adaptive modulation. Although Information Theory is not the main topic of the book OCo in fact, the concept of joint source-channel coding is contradictory to the classical system design motivated by a questionable practical interpretation of the separation theorem OCo this theory still provides the ultimate performance limits for any practical system, whether it uses joint source-channel coding or not. Therefore, the theoretical limits are presented in a self-contained appendix, which is a useful reference also for those not directly interested in the main topic of this book. Sample Chapter(s). Chapter 1: Introduction (98 KB). Contents: Joint Source-Channel Coding: An Overview; Joint Source-Channel Decoding; Channel-Adaptive Scaled Vector Quantization; Index Assignments for Multiple Descriptions Vector Quantizers; Source-Adaptive Modulation; Source-Adaptive Power Allocation; Appendices: Theoretical Performance Limits; Optimal Decoder for a Given Encoder; Symbol Error Probabilities for M-PSK; Derivative of the Expected Distortion for SAM. Readership: Students at advanced undergraduate and graduate level; practitioners and academics in Electrical and Communications Engineering, Information Technology and Computer Science."
Consolidating knowledge on Joint Source-Channel Coding (JSCC), this book provides an indispensable resource on a key area of performance enhancement for communications networks Presenting in one volume the key theories, concepts and important developments in the area of Joint Source-Channel Coding (JSCC), this book provides the fundamental material needed to enhance the performance of digital and wireless communication systems and networks. It comprehensively introduces JSCC technologies for communications systems, including coding and decoding algorithms, and emerging applications of JSCC in current wireless communications. The book covers the full range of theoretical and technical areas before concluding with a section considering recent applications and emerging designs for JSCC. A methodical reference for academic and industrial researchers, development engineers, system engineers, system architects and software engineers, this book: Explains how JSCC leads to high performance in communication systems and networks Consolidates key material from multiple disparate sources Is an ideal reference for graduate-level courses on digital or wireless communications, as well as courses on information theory Targets professionals involved with digital and wireless communications and networking systems
This book presents a succinct and mathematically rigorous treatment of the main pillars of Shannon’s information theory, discussing the fundamental concepts and indispensable results of Shannon’s mathematical theory of communications. It includes five meticulously written core chapters (with accompanying problems), emphasizing the key topics of information measures; lossless and lossy data compression; channel coding; and joint source-channel coding for single-user (point-to-point) communications systems. It also features two appendices covering necessary background material in real analysis and in probability theory and stochastic processes. The book is ideal for a one-semester foundational course on information theory for senior undergraduate and entry-level graduate students in mathematics, statistics, engineering, and computing and information sciences. A comprehensive instructor’s solutions manual is available.
Speech coding has been an ongoing area of research for several decades, yet the level of activity and interest in this area has expanded dramatically in the last several years. Important advances in algorithmic techniques for speech coding have recently emerged and excellent progress has been achieved in producing high quality speech at bit rates as low as 4.8 kb/s. Although the complexity of the newer more sophisticated algorithms greatly exceeds that of older methods (such as ADPCM), today's powerful programmable signal processor chips allow rapid technology transfer from research to product development and permit many new cost-effective applications of speech coding. In particular, low bit rate voice technology is converging with the needs of the rapidly evolving digital telecom munication networks. The IEEE Workshop on Speech Coding for Telecommunications was held in Vancouver, British Columbia, Canada, from September 5 to 8, 1989. The objective of the workshop was to provide a forum for discussion of recent developments and future directions in speech coding. The workshop attracted over 130 researchers from several countries and its technical program included 51 papers.
This book provides the first comprehensive and easy-to-read discussion of joint source-channel encoding and decoding for source signals with continuous amplitudes. It is a state-of-the-art presentation of this exciting, thriving field of research, making pioneering contributions to the new concept of source-adaptive modulation.The book starts with the basic theory and the motivation for a joint realization of source and channel coding. Specialized chapters deal with practically relevant scenarios such as iterative source-channel decoding and its optimization for a given encoder, and also improved encoder designs by channel-adaptive quantization or source-adaptive modulation.Although Information Theory is not the main topic of the book ? in fact, the concept of joint source-channel coding is contradictory to the classical system design motivated by a questionable practical interpretation of the separation theorem ? this theory still provides the ultimate performance limits for any practical system, whether it uses joint source-channel coding or not. Therefore, the theoretical limits are presented in a self-contained appendix, which is a useful reference also for those not directly interested in the main topic of this book.
This book constitutes the refereed proceedings of the 6th International Workshop on Multiple Access Communications, MACOM 2013, held in Vilnius, Lithuania, in December 2013. The 16 full papers presented were carefully reviewed and selected from various submissions. They describe the latest advancements in the field of multiple access communications with an emphasis on OFDM techniques, channel coding, spectrum management, medium access control protocols and different aspects of wireless access networks.
Programming has become a significant part of connecting theoretical development and scientific application computation. Computer programs and processes that take into account the goals and needs of the user meet with the greatest success, so it behooves software engineers to consider the human element inherent in every line of code they write. Research Anthology on Recent Trends, Tools, and Implications of Computer Programming is a vital reference source that examines the latest scholarly material on trends, techniques, and uses of various programming applications and examines the benefits and challenges of these computational developments. Highlighting a range of topics such as coding standards, software engineering, and computer systems development, this multi-volume book is ideally designed for programmers, computer scientists, software developers, analysts, security experts, IoT software programmers, computer and software engineers, students, professionals, and researchers.