Download Free Joint North American European Workshop On Measurement And Modeling Of Methane Fluxes From Landfills Book in PDF and EPUB Free Download. You can read online Joint North American European Workshop On Measurement And Modeling Of Methane Fluxes From Landfills and write the review.

Learn to create and use simulation models—the most reliable and cost-effective tools for predicting real-world results! The Handbook of Processes and Modeling in the Soil-Plant System is the first book to present a holistic view of the processes within the soil-plant-atmosphere continuum. Unlike other publications, which tend to be more specialized, this book covers nearly all of the processes in the soil-plant system, including the fundamental processes of soil formation, degradation, and the dynamics of water and matter. It also illustrates how simulation modeling can be used to understand and forecast multiple interactions among various processes and predict their environmental impact. This unique volume assembles information that until now was scattered among journals, bulletins, reports, and symposia proceedings to present models that simulate almost all of the processes occurring in the soil-plant system and explores the results that these models are capable of producing. With chapters authored by experts with years of research and teaching experience, the Handbook of Processes and Modeling in the Soil-Plant System examines: physical, chemical, and biological soil processes the soil formation and weathering process and its modeling the impact of radioactive fallout on the soil-plant system soil degradation processes and ways to control them water and matter dynamics in the soil-plant system growth and development of crops at various levels of production the potentials and limitations of using simulation models Students, educators, and professionals alike will find the Handbook of Processes and Modeling in the Soil-Plant System an invaluable reference on the soil-plant-atmosphere system and an ideal tool to help develop an effective decision support system.
The emerging multidisciplinary field of earth system science sets out to improve our understanding functioning ecosystems, at a global level across the entire planet. Stable Isotopes and Biosphere - Atmosphere Interactions looks to one of its most powerful tools — the application of stable isotope analyses — to understanding biosphere-atmosphere exchange of the greenhouse gases, and synthesizes much of the recent progress in this work. Stable Isotopes and Biosphere - Atmosphere Interactions describes recent progress in understanding the mechanisms, processes and applications of new techniques. It makes a significant contribution to the emerging, multidisciplinary study of the Earth as an interacting system. This book will be an important reference for students and researchers in biology, ecology, biogeochemistry, meteorology, and atmospheric science and will be invaluable for anyone with any interest in the future of the planet. - Describes applications of new stable isotope techniques to the emerging fields of earth system science and global change - Illustrates advances in scaling of physiological processes from leaf/soil to the global scale - Contains state-of-the-art, critical reviews written by international researchers and experts
Understanding, quantifying, and tracking atmospheric methane and emissions is essential for addressing concerns and informing decisions that affect the climate, economy, and human health and safety. Atmospheric methane is a potent greenhouse gas (GHG) that contributes to global warming. While carbon dioxide is by far the dominant cause of the rise in global average temperatures, methane also plays a significant role because it absorbs more energy per unit mass than carbon dioxide does, giving it a disproportionately large effect on global radiative forcing. In addition to contributing to climate change, methane also affects human health as a precursor to ozone pollution in the lower atmosphere. Improving Characterization of Anthropogenic Methane Emissions in the United States summarizes the current state of understanding of methane emissions sources and the measurement approaches and evaluates opportunities for methodological and inventory development improvements. This report will inform future research agendas of various U.S. agencies, including NOAA, the EPA, the DOE, NASA, the U.S. Department of Agriculture (USDA), and the National Science Foundation (NSF).
A study of global change (IGBP) of the International Council of Scientific Unions.
The GHG Protocol Corporate Accounting and Reporting Standard helps companies and other organizations to identify, calculate, and report GHG emissions. It is designed to set the standard for accurate, complete, consistent, relevant and transparent accounting and reporting of GHG emissions.
We live on a dynamic Earth shaped by both natural processes and the impacts of humans on their environment. It is in our collective interest to observe and understand our planet, and to predict future behavior to the extent possible, in order to effectively manage resources, successfully respond to threats from natural and human-induced environmental change, and capitalize on the opportunities â€" social, economic, security, and more â€" that such knowledge can bring. By continuously monitoring and exploring Earth, developing a deep understanding of its evolving behavior, and characterizing the processes that shape and reshape the environment in which we live, we not only advance knowledge and basic discovery about our planet, but we further develop the foundation upon which benefits to society are built. Thriving on Our Changing Planet presents prioritized science, applications, and observations, along with related strategic and programmatic guidance, to support the U.S. civil space Earth observation program over the coming decade.