Download Free Joining Efforts To Improve Data Quality And Harmonization Among European Population Based Cancer Registries Book in PDF and EPUB Free Download. You can read online Joining Efforts To Improve Data Quality And Harmonization Among European Population Based Cancer Registries and write the review.

Population-based cancer registries are an essential information source for quantifying the impact of cancer in a population and its evolution, planning and evaluation of cancer control policies and healthcare systems. In the last decades, the information provided by cancer registries has improved dramatically in quality and quantity. Technological advances and record linkage have contributed to data improvement. Therefore, clinical data collected by cancer registries such as stage, treatment, co-morbidity, etc. contribute to treatment effectiveness assessment and identification of inequality in health care access at the population level. The reliability and utility of the information provided by cancer registries depend on the quality of the data collected. On the other hand, cancer registries' data harmonisation is crucial for data use and comparability.
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Americans should be able to count on receiving health care that is safe. To achieve this, a new health care delivery system is needed â€" a system that both prevents errors from occurring, and learns from them when they do occur. The development of such a system requires a commitment by all stakeholders to a culture of safety and to the development of improved information systems for the delivery of health care. This national health information infrastructure is needed to provide immediate access to complete patient information and decision-support tools for clinicians and their patients. In addition, this infrastructure must capture patient safety information as a by-product of care and use this information to design even safer delivery systems. Health data standards are both a critical and time-sensitive building block of the national health information infrastructure. Building on the Institute of Medicine reports To Err Is Human and Crossing the Quality Chasm, Patient Safety puts forward a road map for the development and adoption of key health care data standards to support both information exchange and the reporting and analysis of patient safety data.
Chronic diseases are common and costly, yet they are also among the most preventable health problems. Comprehensive and accurate disease surveillance systems are needed to implement successful efforts which will reduce the burden of chronic diseases on the U.S. population. A number of sources of surveillance data-including population surveys, cohort studies, disease registries, administrative health data, and vital statistics-contribute critical information about chronic disease. But no central surveillance system provides the information needed to analyze how chronic disease impacts the U.S. population, to identify public health priorities, or to track the progress of preventive efforts. A Nationwide Framework for Surveillance of Cardiovascular and Chronic Lung Diseases outlines a conceptual framework for building a national chronic disease surveillance system focused primarily on cardiovascular and chronic lung diseases. This system should be capable of providing data on disparities in incidence and prevalence of the diseases by race, ethnicity, socioeconomic status, and geographic region, along with data on disease risk factors, clinical care delivery, and functional health outcomes. This coordinated surveillance system is needed to integrate and expand existing information across the multiple levels of decision making in order to generate actionable, timely knowledge for a range of stakeholders at the local, state or regional, and national levels. The recommendations presented in A Nationwide Framework for Surveillance of Cardiovascular and Chronic Lung Diseases focus on data collection, resource allocation, monitoring activities, and implementation. The report also recommends that systems evolve along with new knowledge about emerging risk factors, advancing technologies, and new understanding of the basis for disease. This report will inform decision-making among federal health agencies, especially the Department of Health and Human Services; public health and clinical practitioners; non-governmental organizations; and policy makers, among others.
People have always travelled within Europe for work and leisure, although never before with the current intensity. Now, however, they are travelling for many other reasons, including the quest for key services such as health care. Whatever the reason for travelling, one question they ask is "If I fall ill, will the health care I receive be of a high standard?" This book examines, for the first time, the systems that have been put in place in all of the European Union's 27 Member States. The picture it paints is mixed. Some have well developed systems, setting standards based on the best available evidence, monitoring the care provided, and taking action where it falls short. Others need to overcome significant obstacles.
The National Academies of Sciences, Engineering, and Medicine held the workshop Applying Big Data to Address the Social Determinants of Health in Oncology on October 28â€"29, 2019, in Washington, DC. This workshop examined social determinants of health (SDOH) in the context of cancer, and considered opportunities to effectively leverage big data to improve health equity and reduce disparities. The workshop featured presentations and discussion by experts in technology, oncology, and SDOH, as well as representatives from government, industry, academia, and health care systems. This publication summarizes the presentations and discussions from the workshop.
In the realm of health care, privacy protections are needed to preserve patients' dignity and prevent possible harms. Ten years ago, to address these concerns as well as set guidelines for ethical health research, Congress called for a set of federal standards now known as the HIPAA Privacy Rule. In its 2009 report, Beyond the HIPAA Privacy Rule: Enhancing Privacy, Improving Health Through Research, the Institute of Medicine's Committee on Health Research and the Privacy of Health Information concludes that the HIPAA Privacy Rule does not protect privacy as well as it should, and that it impedes important health research.
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.
While there may be consensus on the broader issues of the core objectives of the health care system, expectations differ between EU countries, and European national policy-makers. This book seeks firstly to assess the impact of the enlargement process and then to analyse the challenges that lie ahead in the field of health and health policy.
Recoge: 1. Epidemiological guidelines for quality assurance in cervical cancer screening - 2. Methods for screening and diagnosis - 3. Laboratory guidelines and quality assurance practices for cytology - 4. Techniques and quality assurance guidelines for histopathology - 5. Management of abnormal cervical cytology - 6. Key performance indicators - 7. Annexes.