Download Free Iwahori Hecke Algebras And Schur Algebras Of The Symmetric Group Book in PDF and EPUB Free Download. You can read online Iwahori Hecke Algebras And Schur Algebras Of The Symmetric Group and write the review.

This volume presents a fully self-contained introduction to the modular representation theory of the Iwahori-Hecke algebras of the symmetric groups and of the $q$-Schur algebras. The study of these algebras was pioneered by Dipper and James in a series of landmark papers. The primary goal of the book is to classify the blocks and the simple modules of both algebras. The final chapter contains a survey of recent advances and open problems. The main results are proved by showing that the Iwahori-Hecke algebras and $q$-Schur algebras are cellular algebras (in the sense of Graham and Lehrer). This is proved by exhibiting natural bases of both algebras which are indexed by pairs of standard and semistandard tableaux respectively. Using the machinery of cellular algebras, which is developed in chapter 2, this results in a clean and elegant classification of the irreducible representations of both algebras. The block theory is approached by first proving an analogue of the Jantzen sum formula for the $q$-Schur algebras. This book is the first of its kind covering the topic. It offers a substantially simplified treatment of the original proofs. The book is a solid reference source for experts. It will also serve as a good introduction to students and beginning researchers since each chapter contains exercises and there is an appendix containing a quick development of the representation theory of algebras. A second appendix gives tables of decomposition numbers.
The modular representation theory of Iwahori-Hecke algebras and this theory's connection to groups of Lie type is an area of rapidly expanding interest; it is one that has also seen a number of breakthroughs in recent years. In classifying the irreducible representations of Iwahori-Hecke algebras at roots of unity, this book is a particularly valuable addition to current research in this field. Using the framework provided by the Kazhdan-Lusztig theory of cells, the authors develop an analogue of James' (1970) "characteristic-free'' approach to the representation theory of Iwahori-Hecke algebras in general. Presenting a systematic and unified treatment of representations of Hecke algebras at roots of unity, this book is unique in its approach and includes new results that have not yet been published in book form. It also serves as background reading to further active areas of current research such as the theory of affine Hecke algebras and Cherednik algebras. The main results of this book are obtained by an interaction of several branches of mathematics, namely the theory of Fock spaces for quantum affine Lie algebras and Ariki's theorem, the combinatorics of crystal bases, the theory of Kazhdan-Lusztig bases and cells, and computational methods. This book will be of use to researchers and graduate students in representation theory as well as any researchers outside of the field with an interest in Hecke algebras.
Representation Theory of Symmetric Groups is the most up-to-date abstract algebra book on the subject of symmetric groups and representation theory. Utilizing new research and results, this book can be studied from a combinatorial, algorithmic or algebraic viewpoint. This book is an excellent way of introducing today’s students to representation theory of the symmetric groups, namely classical theory. From there, the book explains how the theory can be extended to other related combinatorial algebras like the Iwahori-Hecke algebra. In a clear and concise manner, the author presents the case that most calculations on symmetric group can be performed by utilizing appropriate algebras of functions. Thus, the book explains how some Hopf algebras (symmetric functions and generalizations) can be used to encode most of the combinatorial properties of the representations of symmetric groups. Overall, the book is an innovative introduction to representation theory of symmetric groups for graduate students and researchers seeking new ways of thought.
This volume is an outgrowth of the program Modular Representation Theory of Finite and p-Adic Groups held at the Institute for Mathematical Sciences at National University of Singapore during the period of 1-26 April 2013. It contains research works in the areas of modular representation theory of p-adic groups and finite groups and their related algebras. The aim of this volume is to provide a bridge — where interactions are rare between researchers from these two areas — by highlighting the latest developments, suggesting potential new research problems, and promoting new collaborations.It is perhaps one of the few volumes, if not only, which treats such a juxtaposition of diverse topics, emphasizing their common core at the heart of Lie theory.
Finite Coxeter groups and related structures arise naturally in several branches of mathematics such as the theory of Lie algebras and algebraic groups. The corresponding Iwahori-Hecke algebras are then obtained by a certain deformation process which have applications in the representation theory of groups of Lie type and the theory of knots and links. This book develops the theory of conjugacy classes and irreducible character, both for finite Coxeter groups and the associated Iwahori-Hecke algebras. Topics covered range from classical results to more recent developments and are clear and concise. This is the first book to develop these subjects both from a theoretical and an algorithmic point of view in a systematic way, covering all types of finite Coxeter groups.
Over the last three decades representation theory of groups, Lie algebras and associative algebras has undergone a rapid development through the powerful tool of almost split sequences and the Auslander-Reiten quiver. Further insight into the homology of finite groups has illuminated their representation theory. The study of Hopf algebras and non-commutative geometry is another new branch of representation theory which pushes the classical theory further. All this can only be seen in connection with an understanding of the structure of special classes of rings. The aim of this book is to introduce the reader to some modern developments in: Lie algebras, quantum groups, Hopf algebras and algebraic groups; non-commutative algebraic geometry; representation theory of finite groups and cohomology; the structure of special classes of rings.
This book provides an accessible introduction to the state of the art of representation theory of finite groups. Starting from a basic level that is summarized at the start, the book proceeds to cover topics of current research interest, including open problems and conjectures. The central themes of the book are block theory and module theory of group representations, which are comprehensively surveyed with a full bibliography. The individual chapters cover a range of topics within the subject, from blocks with cyclic defect groups to representations of symmetric groups. Assuming only modest background knowledge at the level of a first graduate course in algebra, this guidebook, intended for students taking first steps in the field, will also provide a reference for more experienced researchers. Although no proofs are included, end-of-chapter exercises make it suitable for student seminars.
Professor Xihua Cao (1920-2005) was a leading scholar at East China Normal University (ECNU) and a famous algebraist in China. His contribution to the Chinese academic circle is particularly the formation of a world-renowned 'ECNU School' in algebra, covering research areas include algebraic groups, quantum groups, algebraic geometry, Lie algebra, algebraic number theory, representation theory and other hot fields. In January 2020, in order to commemorate Professor Xihua Cao's centenary birthday, East China Normal University held a three-day academic conference. Scholars at home and abroad gave dedications or delivered lectures in the conference. This volume originates from the memorial conference, collecting the dedications of scholars, reminiscences of family members, and 16 academic articles written based on the lectures in the conference, covering a wide range of research hot topics in algebra. The book shows not only scholars' respect and memory for Professor Xihua Cao, but also the research achievements of Chinese scholars at home and abroad.
This book presents state-of-the-art research and survey articles that highlight work done within the Priority Program SPP 1489 “Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory”, which was established and generously supported by the German Research Foundation (DFG) from 2010 to 2016. The goal of the program was to substantially advance algorithmic and experimental methods in the aforementioned disciplines, to combine the different methods where necessary, and to apply them to central questions in theory and practice. Of particular concern was the further development of freely available open source computer algebra systems and their interaction in order to create powerful new computational tools that transcend the boundaries of the individual disciplines involved. The book covers a broad range of topics addressing the design and theoretical foundations, implementation and the successful application of algebraic algorithms in order to solve mathematical research problems. It offers a valuable resource for all researchers, from graduate students through established experts, who are interested in the computational aspects of algebra, geometry, and/or number theory.
This book contains most of the nonstandard material necessary to get acquainted with this new rapidly developing area. It can be used as a good entry point into the study of representations of quantum groups. Among several tools used in studying representations of quantum groups (or quantum algebras) are the notions of Kashiwara's crystal bases and Lusztig's canonical bases. Mixing both approaches allows us to use a combinatorial approach to representations of quantum groups and toapply the theory to representations of Hecke algebras. The primary goal of this book is to introduce the representation theory of quantum groups using quantum groups of type $A {r-1 {(1) $ as a main example. The corresponding combinatorics, developed by Misra and Miwa, turns out to be thecombinatorics of Young tableaux. The second goal of this book is to explain the proof of the (generalized) Leclerc-Lascoux-Thibon conjecture. This conjecture, which is now a theorem, is an important breakthrough in the modular representation theory of the Hecke algebras of classical type. The book is suitable for graduate students and research mathematicians interested in representation theory of algebraic groups and quantum groups, the theory of Hecke algebras, algebraic combinatorics, andrelated fields.