Download Free Isotopic Composition Of Precipitation In The Mediterranean Basin In Relation To Air Circulation Patterns And Climate Book in PDF and EPUB Free Download. You can read online Isotopic Composition Of Precipitation In The Mediterranean Basin In Relation To Air Circulation Patterns And Climate and write the review.

This publication is a compilation of the results obtained under a co-ordinated research project undertaken from 2000 to 2003 including hydrologists, hydrogeologists and meteorologists from 14 Mediterranean countries, who collaborated at national and regional levels. The isotopic composition of precipitation is closely connected with the conditions for rain formation, and stable isotopes are useful tools for investigating the precipitation and formation conditions, and for monitoring their changes in parallel to the observed climatic changes.
This volume is devoted to Earth surface environmental reconstructions and environmental changes that may be deciphered and modelled using stable isotopes along with mineralogical/chemical, sedimentological, palaeontological/biological and climatological methodologies. The book is divided into two sections, both using stable isotopes (see www.geolsoc.org.uk/SP507) in various samples and phases as the main research tool. The first section is devoted to studies focusing on the distribution of isotopes in precipitation, groundwater, lakes, rivers, springs, tap water, mine water and their relationship with terrestrial environments at regional to continental scale. In relation to this, the second section includes case studies from a range of continental settings, investigating cave deposits (stalagmites, bat guano), animal skeletons (dinosaurs, alligators, turtles, bivalves), present and past soils (palaeosols) and limestones. The sections focus on the interaction between the surficial water cycle and underground water storage with deposits acting as archives of short- to long-term climatic and environmental changes. Examples from the Early Cretaceous to present time come from Europe, Asia, Africa, North and South America.
Seminar paper from the year 2013 in the subject Geography / Earth Science - Meteorology, Aeronomy, Climatology, grade: 85%, Ruhr-University of Bochum, language: English, abstract: The Mediterranean Sea is an almost enclosed basin with a coverage of 4000 km in west-east and 1200 km in north-south direction. Many European, North African and Middle Eastern states abut on this ocean and are massively influenced by it. The Mediterranean can be denoted as a cutting point between subtropical and humid climate and is influenced by both of them. This and the Mediterranean Sea lead to a very specific and individual climate around this basin. In this paper the leading factors of the climate conditions are revealed, which include references to global atmospheric circulations, regional climate patterns and micro-scale descriptions of specific phenomena in the Mediterranean. Therefore I refer to different scientific articles and mainly to two specific Mediterranean monographs (Branigan; Bolle). Because of the introducing character of this paper most phenomena are explained in a more general way and do not have reference to direct climate data. More detailed knowledge and data basis can be taken by the references and footnotes.
This book describes recent developments in the modeling of hydro-climatological processes in time and space. The topic brings together a wide range of disciplines, such as climatology, hydrology, geomorphology and ecology, with examples of problems and related modeling approaches. Parsimonious hydro-climatological models hold the potential to simulate the combined effects of rainfall intensity and distribution patterns in the absence of precipitation records for short time intervals (e.g. daily to sub-hourly) and over large areas (e.g. regional to continental). In this book, we show how the principle of parsimony can be followed without sacrificing depth in seeking to understand a variety of landscape and surface processes that include hydrologic phenomena. Geographically speaking, the focus of the book is on Mediterranean environments. In this region, which is characterized by a complex morphology, soil erosion by water is a major cause of landscape degradation and the fragility of ecosystems is abundantly documented. By exploring interactions between erosive storms and land with the help of modeling solutions created at a variety of scales, the book investigates in detail the climatic implications for the Mediterranean landscape in an effort to bridge historical and contemporary research, which makes it unique in its approach. The book provides a valuable resource for environmental scientists, while also providing an important basis for graduate and postgraduate students interested in research on hydrological cycles and environmental changes.
In the region comprising Turkey and Greece, people have been using water from geothermal sources for bathing and washing of clothes since ancient times. This region falls within the Alpine-Himalayan orogenic belt and hence is a locus of active volcanism and tectonism and experiences frequent seismic events. This volcanic and tectonic activity has given rise to over 1500 geothermal springs. Its importance was recognized decades ago and the geothermal water is now being utilized for district heating, industrial processing, domestic water supply, balneology and electric power generation. The geothermal potential in this region is large. In Turkey alone it is estimated to be more than 31500 MWt while the proven potential is 4078 MWt. At present 2084 MWt is being utilized for direct applications in Turkey and 135 MWt in Greece. In Turkey electricity is produced for 166 MW installed capacity, whereas in Greece geothermal energy is presently not used for electricity production despite its potential. This book discusses the geochemical evolution of the thermal waters and thermal gases in terms of the current volcano-tectonic setting and associated geological framework that makes the region very important to the geothermal scientific community. The book explains, in a didactic way, the possible applications, depending on local conditions and scales, and it presents new and stimulating ideas for future developments of this renewable energy source. Additionally, the book discusses the role(s) of possible physicochemical processes in deep hydrothermal systems, the volatile provenance and relative contributions of mantle and crustal components to total volatile inventories. It provides the reader with a thorough understanding of the geothermal systems of this region and identifi es the most suitable solutions for specifi c tasks and needs elsewhere in the world. It is the fi rst time that abundant information and data from this region, obtained from intensive research during the last few decades, is unveiled to the international geothermal community. Thus, an international readership, in the professional and academic sectors, as well as in key institutions that deal with geothermal energy, will benefit from the knowledge from geothermal research and experiences obtained from the Aegean Region.
Contains 174 extended abstracts of papers presented during 11 technical sessions of the 11th symposium in the series that was convened during 19-23 May 2003 in Vienna. Nearly 275 participants from 69 countries participated in the symposium to discuss the past, present and future of isotope applications in hydrology and climate research.
The book provides an updated description of climate variability in the Mediterranean basin, focusing on its strong inter-annual to decadal features. It describes both local physical processes responsible for these variability - such as changes in the surface properties and land use - and globalprocesses - such as changes in the large scale atmospheric circulation associated to global warming, NAO, tropical monsoon and ENSO. Regional climate change issues are also addressed. * The book provides an updated analysis of the Mediterranean climate features and guidelines for future research. * Both “oceanographic” and “atmospheric” aspects are considered and links are analysed. * The Mediterranean is analysed in a global perspective
“Today, over two billion people in developing countries live without any electricity. They lead lives of misery, walking miles every day for water and firewood, just to survive. What if there was an existing, viable technology, that when developed to its highest potential could increase everyone’s standard of living, cut fossil fuel demand and the resultant pollution” said Peter Meisen, President, Global Energy Network Institute in 1997. Even though energy is available, technology was not matured enough to tap this energy in the nineties. Now, with the advancement of drilling technology, extracting heat from hot rocks has become a reality. Very soon when CO2 replaces the circulation fluid to extract heat from granites then both fossil fuel based and renewable energy sources will coexists balancing the CO2 emissions and providing energy, food and water security to the rich and the poor countries. Red Sea rift represents the youngest spreading ridges in the world with a vast amount of heat energy stored on either side. The Red Sea is surrounded by countries with a weak economy. Developing a geothermal energy based economy in countries like Eritrea, Djibouti and Ethiopia will provide food and water security to these countries while for other countries, geothermal energy will help in mitigating greenhouse gas emissions. Although geothermal energy sources are available in all the countries since the opening of the Red Sea, millions of years ago, this was not brought to the light. Oil importing countries became highly dependent on the oil rich countries to sustain their economy and growth and thus remained poor. This book unfolds the huge energy source, hydrothermal and EGS, for the benefit of the poor countries to reduce poverty and lift the socio economic status of these countries. The book deals with i) future energy demand, ii) CO2 emissions associated with fossil fuel based power plants, iii) black carbon emissions associated biomass energy source and iv) strategies to reduce CO2 emissions by using geothermal energy as energy source mix in all the countries—oil exporting and oil importing countries— around the Red Sea. The amount of energy available from hot granites in all the countries is well documented. EGS being the future energy source for mankind, this book will form the basis for future research by young scientists and academicians. Availability of fresh water is a matter of concern for all countries. The only way to satisfy the thirst of a growing population, to meet drinking water demand and food security, is to depend on seawater. A large volume of CO2 is being emitted from desalination plants supported by fossil fuel based energy sources. This book describes the advantages of using geothermal energy sources for the desalination process to meet the growing water and food demand of the countries around the Red Sea. Oil rich countries, using its geothermal resources, can now reduce food imports and become self sufficient in food production. This book gives hope for millions of children living in the underdeveloped countries around the Red Sea to satisfy their hunger and live a decent life with a continuous source of electricity, water and food available. This book ends with a note on the economic benefits of geothermal energy vs other renewables. With the signing of the GGA (Global Geothermal Alliance) by several countries during the December 2015 CoP 21 summit in Paris, policy makers and administrators will work together in implementing the necessary infrastructure and support to develop this clean energy source.
Within the realm of the newly evolving discipline of environmental sciences, the stable-isotope methodology is being used to an ever-increasing extent, especially in the study of the water cycle and of paleo-climatology. This book introduces the rules of the game, by reviewing the natural variability of stable isotopes in the hydrosphere, describing the physico-chemical basis of isotope fractionation, and applying this knowledge to natural waters as they move through the hydrologic cycle from the ocean to the atmosphere, the biosphere and the lithosphere. There is a special focus on the processes at the surface-atmosphere and land-biosphere-atmosphere interfaces, since these are the sites of major changes in isotope composition. In response to the increasing awareness of our changing climate, a discussion on the global view of the changing water cycle, in the past and future, winds up the presentation./a
This book presents selected papers from the EuroKarst 2018 conference, which highlighted the latest advances in the field of Karst Hydrogeology and Carbonate Reservoirs. The event attracted more than 180 participants. From among their contributions, the papers were selected and subsequently reviewed by the scientific committee to ensure the highest possible quality.