Download Free Irrigation Practice And Engineering Use Of Irrigation Water And Irrigation Practice Book in PDF and EPUB Free Download. You can read online Irrigation Practice And Engineering Use Of Irrigation Water And Irrigation Practice and write the review.

The comprehensive and compact presentation in this book is the perfect format for a resource/textbook for undergraduate students in the areas of Agricultural Engineering, Biological Systems Engineering, Bio-Science Engineering, Water Resource Engineering, and Civil & Environmental Engineering. This book will also serve as a reference manual for researchers and extension workers in such diverse fields as agricultural engineering, agronomy, ecology, hydrology, and meteorology.
Management Strategies for Water Use Efficiency and Micro Irrigated Crops presents new research and technologies for making better use of water resources for agricultural purposes. The chapters focus on better management to improve allocation and irrigation water efficiency and look at performance factors as well. Chapters look at irrigation technology, environmental conditions, and scheduling of water application. One section of the book focuses on water management in the cultivation of sugarcane, a very important industrial crop used in many fields. Other sections are devoted to principles and challenging technologies, water use efficiency for drip-irrigated crops, performance of fertigated rice under micro irrigation, and evaluation of performance of drip-irrigated crops. This valuable book is a must for those struggling to find ways to address the need to maintain efficient crop production in the midst of water shortages. With chapters from hands-on experts in the field, the book will be an invaluable reference and guide to effective micro irrigation methods.
Conveyance of water; General considerations and features pertaining to irrigation systems; Conveyance of water in calnnals, tunnels, flumes and pipes; Use of irrigation water; Irrigation practice.
This textbook focuses specifically on the combined topics of irrigation and drainage engineering. It emphasizes both basic concepts and practical applications of the latest technologies available. The design of irrigation, pumping, and drainage systems using Excel and Visual Basic for Applications programs are explained for both graduate and undergraduate students and practicing engineers. The book emphasizes environmental protection, economics, and engineering design processes. It includes detailed chapters on irrigation economics, soils, reference evapotranspiration, crop evapotranspiration, pipe flow, pumps, open-channel flow, groundwater, center pivots, turf and landscape, drip, orchards, wheel lines, hand lines, surfaces, greenhouse hydroponics, soil water movement, drainage systems design, drainage and wetlands contaminant fate and transport. It contains summaries, homework problems, and color photos. The book draws from the fields of fluid mechanics, soil physics, hydrology, soil chemistry, economics, and plant sciences to present a broad interdisciplinary view of the fundamental concepts in irrigation and drainage systems design.
The book, now in its second edition, fulfills the need for an up-to-date comprehensive text on irrigation water management for students of agriculture both at the undergraduate and postgraduate levels. The scope of the book makes it a useful reference for courses in agricultural engineering, agronomy, soil science, agricultural physics and environ-mental sciences. It can also serve as a valuable guidebook to persons working with farming communities. The coverage in sixteen chapters brings out different aspects of irrigation including irrigation situation in the world, rainfall, evaporation, water wealth and progressive development of irrigation in India, measurement of soil water and irrigation water, methods of irrigation, irrigation with saline water, formulating cropping pattern in irrigated area and management of high water table. In the second edition, a new chapter on ‘On-farm Irrigation System’ has been included and a few chapters have been updated to include latest development. The book has useful research data and a large number of diagrams for easy comprehension of the topics. The end-of-chapter problems and numerous worked-out examples serve to aid further understanding of the subject. The book also contains an extensive glossary.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
This report contains a collection of papers from a workshopâ€"Strengthening Science-Based Decision-Making for Sustainable Management of Scarce Water Resources for Agricultural Production, held in Tunisia. Participants, including scientists, decision makers, representatives of non-profit organizations, and a farmer, came from the United States and several countries in North Africa and the Middle East. The papers examined constraints to agricultural production as it relates to water scarcity; focusing on 1) the state of the science regarding water management for agricultural purposes in the Middle East and North Africa 2) how science can be applied to better manage existing water supplies to optimize the domestic production of food and fiber. The cross-cutting themes of the workshop were the elements or principles of science-based decision making, the role of the scientific community in ensuring that science is an integral part of the decision making process, and ways to improve communications between scientists and decision makers.