Download Free Iridium Complexes In Organic Synthesis Book in PDF and EPUB Free Download. You can read online Iridium Complexes In Organic Synthesis and write the review.

Ranging from hydrogenation to hydroamination, cycloadditions and nanoparticles, this first handbook to comprehensively cover the topic of iridium in synthesis discusses the important advances in iridium-catalyzed reactions, namely the use of iridium complexes in enantioselective catalysis. A must for organic, complex and catalytic chemists, as well as those working with/on organometallics.
The fundamental photophysical properties of iridium(III) materials make this class of materials the pre-eminent transition metal complex for use in optoelectronic applications. Iridium(III) in Optoelectronic and Photonics Applications represents the definitive account of photoactive iridium complexes and their use across a wide variety of applications. This two-volume set begins with an overview of the synthesis of these complexes and discusses their photophysical properties. The text highlights not only mononuclear complexes but also the properties of multinuclear and polymeric iridium-based materials and the assembly of iridium complexes into larger supramolecular architectures such as MOFs and soft materials. Chapters devoted to the use of these iridium-based materials in diverse optoelectronic applications follow, including: electroluminescent devices such as organic light emitting diodes (OLEDs) and light-emitting electrochemical cells (LEECs); electrochemiluminescence (ECL); bioimaging; sensing; light harvesting in the context of solar cell applications; in photoredox catalysis and as components for solar fuels. Although primarily targeting a chemistry audience, the wide applicability of these compounds transcends traditional disciplines, making this text also of use to physicists, materials scientists or biologists who have interests in these areas.
The first source on this expanding analytical science, this reference explores advances in the instrumentation, design, and application of techniques with electrogenerated chemiluminescence (ECL), examining the use and impact of ECL-based assays in clinical diagnostics, life science research, environmental testing, food and water evaluation, and th
This new book on this hot topic summarizes the key achievements for the synthesis and catalytic applications of pincer and pincer-type complexes, providing readers with the latest research highlights. The editors have assembled an international team of leaders in the field, and their contributions focus on the application of various pincer complexes in modern organic synthesis and catalysis, such as C-C and C-X bond forming reactions, C-H bond functionalization, and the activation of small molecules, as well as asymmetric catalysis. A must-have for every synthetic chemist in both academia and industry intending to develop new catalysts and improved synthetic protocols.
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Pincer Compounds: Chemistry and Applications offers valuable state-of-the-art coverage highlighting highly active areas of research—from mechanistic work to synthesis and characterization. The book focuses on small molecule activation chemistry (particularly H2 and hydrogenation), earth abundant metals (such as Fe), actinides, carbene-pincers, chiral catalysis, and alternative solvent usage. The book covers the current state of the field, featuring chapters from renowned contributors, covering four continents and ranging from still-active pioneers to new names emerging as creative strong contributors to this fascinating and promising area. Over a decade since the publication of Morales-Morales and Jensen's The Chemistry of Pincer Compounds (Elsevier 2007), research in this unique area has flourished, finding a plethora of applications in almost every single branch of chemistry—from their traditional application as very robust and active catalysts all the way to potential biological and pharmaceutical applications. - Describes the chemistry and applications of this important class of organometallic and coordination compounds - Includes contributions from global leaders in the field, featuring pioneers in the area as well as emerging experts conducting exciting research on pincer complexes - Highlights areas of promising and active research, including small molecule activation, earth abundant metals, and actinide chemistry
From the contents: Robert H Crabtree: Introduction and History. - Montserrat Diéguez, Oscar Pàmies and Carmen Claver: Iridium-catalysed hydrogenation using phosphorous ligands. - David H. Woodmansee and Andreas Pfaltz: Iridium Catalyzed Asymmetric Hydrogenation of Olefins with Chiral N,P and C,N Ligands. - Ourida Saidi and Jonathan M J Williams: Iridium-catalyzed Hydrogen Transfer Reactions. - John F. Bower and Michael J. Krische: Formation of C-C Bonds via Iridium Catalyzed Hydrogenation and Transfer Hydrogenation. - Jongwook Choi, Alan S. Goldman: Ir-Catalyzed Functionalization of CH Bonds. - Mark P. Pouy and John F. Hartwig: Iridium-Catalyzed Allylic Substitution. - Daniel Carmona and Luis A. Oro: Iridium-catalyzed 1.3-dipolar cycloadditions.
A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting. Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, further chapters focus on the synthesis and design of photocatalysts, solar energy conversion, and such environmental aspects as the removal of water pollutants, photocatalytic conversion of CO2. Besides metal oxide-based photocatalysts, the authors cover other relevant material classes including carbon-based nanomaterials and novel hybrid materials. Chapters on mechanistic aspects, computational modeling of photocatalysis and Challenges and perspectives of solar reactor design for industrial applications complete this unique survey of the subject. With its in-depth discussions ranging from a comprehensive understanding to the engineering of materials and applied devices, this is an invaluable resource for a range of disciplines.
Homogeneous hydrogenation is one of the most thoroughly studied fields of homogeneous catalysis. The results of these studies have proved to be most important for an understanding of the underlying principles of the activation of small molecules by transition metal complexes. During the past three decades homogeneous hydrogenation has found widespread application in organic chemistry, including the production of important pharmaceuticals, especially where a sophisticated degree of selectivity is required. This volume presents a general account of the main principles and applications of homogeneous hydrogenation by transition metal complexes. Special attention is devoted to the mechanisms by which these processes occur, and the role of the recently discovered complexes of molecular hydrogen is described. Sources of hydrogen, other than H2, are also considered (transfer hydrogenation). The latest achievements in highly stereoselective hydrogenations have made possible many new applications in organic synthesis. These applications are documented by giving details of the reduction of important unsaturated substrates (alkenes, alkynes, aldehydes and ketones, nitrocompounds, etc.). Hydrogenation in biphasic and phase transfer catalyzed systems is also described. Finally, a discussion of the biochemical routes of H2 activation highlights the similarities and differences in performing hydrogenation in both natural and synthetic systems. For researchers working in the fields of homogeneous catalysis, especially in areas such as pharmaceuticals, plastics and fine chemicals.
Metal phosphonate chemistry is a highly interdisciplinary field, as it encompasses several other areas, such as materials chemistry, gas storage, pharmaceutics, corrosion control, classical chemical synthesis, X-ray crystallography, powder diffraction, etc. It has also acquired additional significance due to "Metal-Organic Frameworks", as evidenced by the hundreds of papers published each year. This book fills the gap in the literature by summarising, in a concise way, the latest developments in the field. Metal phosphonate chemistry has seen impressive growth in the last 15-20 years and there is a clear need to systematize and organize all this growth. This unique book accomplishes just that need - edited by two experts, it includes contributions from other experienced researchers and organises, categorises and presents in an attractive way the latest hot topics in metal phosphonate chemistry and related applications. With an extensive bibliography, it is a great reference for academic and industrial researchers as well as students working in the field and will act as a starting point for further exploration of the literature. It is also of great interest to scientists working in the broader area of metal-organic frameworks and their applications.