Download Free Ion Exchangers Properties And Applications Book in PDF and EPUB Free Download. You can read online Ion Exchangers Properties And Applications and write the review.

Ion Exchange Materials: Properties and Applications fills a "two-dimensional" gap in books currently available on the subject. Firstly, there is a lack of modern comprehensive publications on the chemistry of ion exchange materials and on the relationships between their properties and practical applications. Secondly, there are few books on ion exchange chemistry that are targeted to industrial R&D specialists and research students who (i) do not work with ion exchange on a daily basis, (ii) need to develop competence in this area, and (iii) find it difficult to start studying the subject from primary scientific publications. The book bridges these gaps by describing classical and modern theoretical concepts, as well as practical approaches for using ion exchange materials. Ion exchange materials combine properties of homogeneous and heterogeneous materials. Besides being an interesting subject for investigation, they are essential in a wide variety of industrial technologies: in the chemical and biochemical industries, pharmacy, medicine, microelectronics, the nuclear industry, food production, waste treatment, and many other areas. Ion exchange is a powerful tool in chemical analysis and scientific research. The main focus in this book is on ion exchange polymers: ion exchange resins, chelating resins, imprinted (templated), and other functional polymers. It provides an in-depth study of ion exchange materials, suitable for postgraduate students and R&D industrial specialists in chemistry, chemical and biochemical technology. - Comprehensively covers the subject - Provides links between theoretical concepts, material properties, practical applications, and technical solutions - Easy to understand - requires only ground knowledge of university-level chemistry and can be read without an in-depth knowledge of mathematics - Supported with an interactive website
Analytical Chemistry, Volume 38: Ion Exchange in Analytical Chemistry provides a broad survey of the important role that ion exchange can and should play in chemical analysis. This book focuses on the plate-equilibrium theory of chromatography, which is less difficult theoretically than the mass-transfer theory. Organized into 11 chapters, this volume begins with an overview of the earliest recorded application of ion exchange. This text then examines how high temperature affects ion-exchange resins. Other chapters consider the exchange of ions between a solid ion-exchanging material and a solution, which is a typically reversible reaction. This book describes as well the relatively simple separations and other applications of ion exchange to analytical chemistry. The final chapter deals with the interesting nature of the metal complexes formed within the exchanger and describe the use of ion-exchange distribution studies to determine the stability and nature of complexes existing in the solution. This book is a valuable resource for analytical chemists.
Ion-exchange Technology I: Theory and Materials describes the theoretical principles of ion-exchange processes. More specifically, this volume focuses on the synthesis, characterization, and modelling of ion-exchange materials and their associated kinetics and equilibria. This title is a highly valuable source not only to postgraduate students and researchers but also to industrial R&D specialists in chemistry, chemical, and biochemical technology as well as to engineers and industrialists.
Ion Exchange: Theory and Application focuses on the applications, complexities, and theoretical aspects of ion exchange. This book discusses the kinetics of fixed-bed ion exchange; fundamental properties of ion exchange resins; ion exchange equipment design; and ion exchange in water treatment. The multistage systems in ion exchange; desalting sea water; applications of ion exchange to the separation of inorganic cations; and ion exchange as a tool in analytical chemistry are also elaborated. This text likewise covers the metal concentration and recovery by ion exchange; catalytic application of ion exchangers; and use of ion exchange adsorbents in biochemical and physiological studies. Other topics include the separation of amino acids by ion exchange chromatography; sugar refining and by-product recovery; and ion exchange recovery of alkaloids. This publication is a good reference for chemists and students interested in ion exchange.
This book presents the applications of ion-exchange materials in the biomedical industries. It includes topics related to the application of ion exchange chromatography in determination, extraction and separation of various compounds such as amino acids, morphine, antibiotics, nucleotides, penicillin and many more. This title is a highly valuable source of knowledge on ion-exchange materials and their applications suitable for postgraduate students and researchers but also to industrial R&D specialists in chemistry, chemical, and biochemical technology. Additionally, this book will provide an in-depth knowledge of ion-exchange column and operations suitable for engineers and industrialists.
Ion Exchange, 2nd Edition is a totally revised and updated version of the highly popular Monograph for Teachers, first published by The Royal Society of Chemistry in 1975. It covers the practical application of ion exchange and the synthesis of organic ion exchange resins, which have spanned nearly 60 years of development since the pioneering work of Adams and Holmes in 1935. This book covers the theory, development, and application in considerable detail and describes the history of development of ion exchange materials and the advances in their utilization in industrial processes. Key applications in such areas as water purification, hydrometallurgy, and chromatography are described and supported by chapters on the related scientific fundamentals governing equilibria and kinetics of ion exchange. Twenty-two experiments using inexpensive equipment are detailed, which not only complement a chapter dedicated to the characterization of organic exchangers, but also serve to illustrate several other pure and applied principles related to ion exchange phenomena. It is anticipated that the unique inclusion of experiments and the broad coverage of the whole text should appeal to a wide readership and offer particular relevance to practitioners in schools, colleges, and industry.
Comprehensive text provides sound understanding of the relevant factors in ion exchange and the theoretical tools needed to solve specific problems. Detailed coverage of ion exchangers, equilibria, kinetics, electrochemical properties, ion-exchanger membranes, much more. Each chapter contains helpful summary and references. Accessible to nonmathematical students. Introduction. 1962 edition.
Various separation membranes have been developed since their discovery over half a century ago, providing numerous benefits and fulfilling many applications in our everyday lives. They lend themselves to techniques ranging from microfiltration and gas separation, to what can be considered as the most advanced technique - ion exchange. This book, aimed at academic researchers, engineers and industrialists, contains a brief history of ion exchange and goes on to explain the preparation, characterization, modification and applications of these important membranes. Discussions include the use of ion exchange in analytical and medical techniques, as well as the development of future applications.
Adsorption, Ion Exchange and Catalysis is essentially a mixture of environmental science and chemical reactor engineering. More specifically, three important heterogeneous processes, namely, adsorption, ion exchange and catalysis, are analysed, from fundamental kinetics to reactor design with emphasis on their environmental applications. In Chapter 1, the subject of air and water pollution is dealt with. Data about pollutants and emission sources are given and the treatment methods are shortly presented. In Chapter 2, the very basics and historical development of adsorption, ion exchange and catalysis are presented as well as their environmental applications. Chapter 3 is devoted to heterogeneous processes and reactor analysis. All types of reactors are described in depth and reactor modelling, hydraulics and mass/heat transfer phenomena are examined for each type of reactor. Chapters 4 and 5 are dedicated to adsorption & ion exchange and catalysis, respectively. The basic principles are presented including kinetics, equilibrium, mass/heat transfer phenomena as well as the analytical solutions of the reactor models presented in Chapter 3. In the sixth chapter, the subject of scale up is approached. The two Annexes at the end of the book contain physical properties of substances of environmental interest as well as unit conversion tables. Finally, nearly all the examples contained are based on real experimental data found in literature with environmental interest. Most of the examples consider all aspects of operation design – kinetics, hydraulics and mass transfer.* Provides basic knowledge of major environmental problems and connects them to chemical engineering