Download Free Investigation Of Biophysical Properties Of Biomolecules By Means Of Atomic Force Microscopy Book in PDF and EPUB Free Download. You can read online Investigation Of Biophysical Properties Of Biomolecules By Means Of Atomic Force Microscopy and write the review.

This book presents methodological and application research in detecting cellular and molecular biophysical properties based on atomic force microscopy (AFM) nanorobotics. Series methods for in situ label-free visualizing and quantifying the multiple physical properties of single cells and single molecules were developed, including immobilization strategies for observing fine structures of living cells, measurements of single-cell mechanics, force recognition of molecular interactions, and mapping protein organizations on cell surface. The biomedical applications of these methods in clinical lymphoma treatments were explored in detail, including primary sample preparation, cancer cell recognition, AFM detection and data analysis. Future directions about the biomedical applications of AFM are also given.
The atomic force microscope (AFM) has become one of the leading nanoscale measurement techniques for materials science since its creation in the 1980's, but has been gaining popularity in a seemingly unrelated field of science: biology. The AFM naturally lends itself to investigating the topological surfaces of biological objects, from whole cells to protein particulates, and can also be used to determine physical properties such as Young's modulus, stiffness, molecular bond strength, surface friction, and many more. One of the most important reasons for the rise of biological AFM is that you can measure materials within a physiologically relevant environment (i.e. liquids). This book is a collection of works beginning with an introduction to the AFM along with techniques and methods of sample preparation. Then the book displays current research covering subjects ranging from nano-particulates, proteins, DNA, viruses, cellular structures, and the characterization of living cells.
This book contains 35 review articles on nanoscience and nanotechnology that were first published in Nature Nanotechnology, Nature Materials and a number of other Nature journals. The articles are all written by leading authorities in their field and cover a wide range of areas in nanoscience and technology, from basic research (such as single-molecule devices and new materials) through to applications (in, for example, nanomedicine and data storage).
This handbook describes experimental techniques to monitor and manipulate individual biomolecules, including fluorescence detection, atomic force microscopy, and optical and magnetic trapping. It includes single-molecule studies of physical properties of biomolecules such as folding, polymer physics of protein and DNA, enzymology and biochemistry, single molecules in the membrane, and single-molecule techniques in living cells.
Intermolecular and Surface Forces describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition. - Starts from the basics and builds up to more complex systems - Covers all aspects of intermolecular and interparticle forces both at the fundamental and applied levels - Multidisciplinary approach: bringing together and unifying phenomena from different fields - This new edition has an expanded Part III and new chapters on non-equilibrium (dynamic) interactions, and tribology (friction forces)
Atomic Force Microscopy for Nanoscale Biophysics: From Single Molecules to Living Cells summarizes the applications of atomic force microscopy for the investigation of biomolecules and cells. The book discusses the methodology of AFM-based biomedical detection, diverse biological systems, and the combination of AFM with other complementary techniques. These state-of-the-art chapters empower researchers to address biological issues through the application of atomic force microscopy. Atomic force microscopy (AFM) is a unique, multifunctional tool for investigating the structures and properties of living biological systems under aqueous conditions with unprecedented spatiotemporal resolution. - Summarizes the recent progress of atomic force microscopy in biomedical applications - Presents the methods and skills of applying atomic force microscopy - Aids researchers in investigating the nanoscale biophysics of diverse biological systems
Researchers in academia and industry who are interested in techniques for measuring intermolecular forces will find this an essential text. It presents a review of modern force spectroscopy, including fundamentals of intermolecular forces, technical aspects of the force measurements, and practical applications. The handbook begins with a review of the fundamental physics of loading single and multiple chemical bonds on the nanometer scale. It contains a discussion of thermodynamic and kinetic models of binding forces and dissipation effects in nanoscale molecular contacts, covers practical aspects of modern single-molecule level techniques, and concludes with applications of force spectroscopy to chemical and biological processes. Computer modeling of force spectroscopy experiments is also addressed.
Atomic force microscopes are very important tools for the advancement of science and technology. This book provides an introduction to the microscopes so that scientists and engineers can learn both how to use them, and what they can do.
Biophysical Chemistry explores the concepts of physical chemistry and molecular structure that underlie biochemical processes. Ideally suited for undergradate students and scientists with backgrounds in physics, chemistry or biology, it is also equally accessible to students and scientists in related fields as the book concisely describes the fundamental aspects of biophysical chemistry, and puts them into a biochemical context. The book is organized in four parts, covering thermodynamics, kinetics, molecular structure and stability, and biophysical methods. Cross-references within and between these parts emphasize common themes and highlight recurrent principles. End of chapter problems illustrate the main points explored and their relevance for biochemistry, enabling students to apply their knowledge and to transfer it to laboratory projects. Features: Connects principles of physical chemistry to biochemistry Emphasizes the role of organic reactions as tools for modification and manipulation of biomolecules Includes a comprehensive section on the theory of modern biophysical methods and their applications
Comprehensive Biomaterials II, Second Edition, Seven Volume Set brings together the myriad facets of biomaterials into one expertly-written series of edited volumes. Articles address the current status of nearly all biomaterials in the field, their strengths and weaknesses, their future prospects, appropriate analytical methods and testing, device applications and performance, emerging candidate materials as competitors and disruptive technologies, research and development, regulatory management, commercial aspects, and applications, including medical applications. Detailed coverage is given to both new and emerging areas and the latest research in more traditional areas of the field. Particular attention is given to those areas in which major recent developments have taken place. This new edition, with 75% new or updated articles, will provide biomedical scientists in industry, government, academia, and research organizations with an accurate perspective on the field in a manner that is both accessible and thorough. Reviews the current status of nearly all biomaterials in the field by analyzing their strengths and weaknesses, performance, and future prospects Covers all significant emerging technologies in areas such as 3D printing of tissues, organs and scaffolds, cell encapsulation; multimodal delivery, cancer/vaccine - biomaterial applications, neural interface understanding, materials used for in situ imaging, and infection prevention and treatment Effectively describes the many modern aspects of biomaterials from basic science, to clinical applications